期刊文献+

一类非线性广义离散系统的无源控制

Passive Control for a Class of Nonlinear Singular Discrete Systems
下载PDF
导出
摘要 针对一类非线性广义离散系统的无源控制问题进行了分析。利用广义Lyapunov函数和线性矩阵不等式(LMI),得到了非线性广义离散系统的零解渐近稳定且无源的充分条件,在此基础上得到了状态反馈无源控制器,使闭环系统零解渐近稳定且无源。同时,给出了相应控制器的设计方法,最后提供一个数值算例说明结论的有效性。 The passive control problem for a class of nonlinear singular discrete systems was analyzed, By the means of generalized Lyapunov function and linear matrix inequality, a sufficient condition was presented and a zero solution of nonlinear singular discrete system is asymptotically stable and passive. Based on the passive analysis, the condition was given for the existence of a state feedback passive controller, and it makes zero solution of the closed--loop system asymptotically stable and passive. Moreover, meamwhile the design method of the controller is given. An example was given to prove the validity of the results.
作者 衣娜 侯景臣
出处 《辽宁石油化工大学学报》 CAS 2011年第3期74-77,88,共5页 Journal of Liaoning Petrochemical University
基金 国家自然科学基金(71001074) 辽宁省教育厅科研项目(W2010302)
关键词 非线性广义离散系统 零解渐近稳定 无源 状态反馈 Nonlinear singular discrete systems Zero solution asymptotical stabilitw Passivitv State feedback
  • 相关文献

参考文献13

  • 1Willem J C. Dissipative dynamical systems--partl: general theory[J]. Archive for mechanics analysis, 1972, 45(5):.321 --351. 被引量:1
  • 2Willem J C. Dissipative dynamical systems--part2: linear systems with quadratic supply rates[J]. Archive for rational mechanics analysis, 1972, 45(5) :352--393. 被引量:1
  • 3Tan Z Q, Soh Y C, Xie L H. Dissipative control for linear discrete--time systems [J]. Automatica, 1999, 35 (9) :1557 --1564. 被引量:1
  • 4Brogliato B, Lozano R, Maschke B, et al. Dissipative systems analysis and control [M]. London: kluwer academic publishers, 2000. 被引量:1
  • 5Byrnes C I, Isidori A, Willems J C. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems [J]. IEEE transactions automat control, 1991, 36 (11): 1228-- 1240. 被引量:1
  • 6Gao Y, Lu G, Wang Z. Passive control for continuous singular systems with non--linear perturbationsEJ-. Control theory & applications, IET, 2010, 4 (11):2554--2564. 被引量:1
  • 7Li Q, Zhang Q L, Yi N, et al. Robust passive control for uncertain time--delay singular systems[J]. IEEE transactions on circuits and syatems--I : regular papers, 2009,56 (3) : 653 -- 663. 被引量:1
  • 8董心壮,张庆灵,郭凯.一类广义非线性系统的无源控制[J].计算技术与自动化,2003,22(3):4-6. 被引量:9
  • 9张庆灵,戴冠中,徐心和,谢绪恺.离散广义系统稳定性分析与控制的Lyapunov方法[J].自动化学报,1998,24(5):622-629. 被引量:22
  • 10梁家荣,商立群,商立军.广义非线性离散系统的稳定性[J].西北大学学报(自然科学版),2001,31(3):189-191. 被引量:6

二级参考文献36

  • 1王伟.具有Hammerstein形式的非线性系统广义预测控制[J].控制理论与应用,1994,11(6):672-680. 被引量:16
  • 2张庆灵.广义系统结构稳定性判别的李亚普诺夫方法[J].系统科学与数学,1994,14(2):117-120. 被引量:50
  • 3戴立意 王朝珠.广义系统结构稳定的正常动态补偿器[J].系统科学与数学,1987,17(1):89-93. 被引量:5
  • 4冯纯伯.反馈系统的无源性分析及其应用[J].自动化学报,1985,11(2):111-117. 被引量:7
  • 5Gabor D. Theory of communication [J]. J. inst. electr, eng. , 1946, 93(3) :429--457. 被引量:1
  • 6Tao L, Kwan H K. 1--D and 2--D real--valued discrete Gabor transforms:midwest symposium on circuits and systems [C]. Lansing, Mi: institute of electrical and electronics engineers inc. , 2000 : 1182-- 1185. 被引量:1
  • 7Wexler J, Raz S. Discrete Gabor expansions[J].Signal processing, 1990, 21(3) :207-220. 被引量:1
  • 8Qian S, Chen D. Discrete Gabor transforms[J]. IEEE transactions on signal processing, 1993, 41(7): 2429--2438. 被引量:1
  • 9Morris J M, Liu Y. Discrete Gabor expansion of discrete--time signals in 12(Z) via frame theory[J].IEEE signal processing magazine, 1994, 40(2) :151--181. 被引量:1
  • 10Liang Tao, Hong--wei I.i. DCT--based real discrete Gabor transform implemented by unified parallel lattice structures: proceedings of the 2007 international conference on wavelet analysis and pattern recognition, ICWAPR '07 [C]. Beijing: [s. n.], 2007:1674--1678. 被引量:1

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部