Modified Multiple Scale/Segment Entropy (MMPE) Analysis of Heart Rate Variability of NHH, CHF & AF Subjects
Modified Multiple Scale/Segment Entropy (MMPE) Analysis of Heart Rate Variability of NHH, CHF & AF Subjects
摘要
Nonlinear analysis of heart rate variability (HRV) has become important as heart behaves as a complex system. In this work, the approximate entropy (ApEn) has been used as a nonlinear measure. A new concept of estimating the ApEn in different segments of long length of the recorded data called modified multiple scale (segment) entropy (MMPE) is introduced. The idea of estimating the approximate entropy in different segments is useful to detect the nonlinear dynamics of the heart present in the entire length of data. The present work has been carried out for three cases namely the normal healthy heart (NHH) data, congestive heart failure (CHF) data and Atrial fibrillation (AF) data and the data are analyzed using MMPE techniques. It is observed that the mean value of ApEn for NHH data is much higher than the mean values for CHF data and AF data. The ApEn profiles of CHF, AF and NHH data for different segments obtained using MPE profiles measures the heart dynamism for the three different cases. Also the power spectral density is obtained using fast fourier transform (FFT) analysis and the ratio of LF/HF (low frequency/high frequency) power are computed on multiple scales/segments namely MPLH (multiple scale low frequency to high frequency) for the NHH data, CHF data and AF data and analyzed using MPLH techniques. The results are presented and discussed in the paper.
二级参考文献12
-
1R.U. Acharya, N. Kannathal, S.M. Krishnan, Comprehen sive analysis of cardiac health using heart rate signals, Physiological Measurement Journal 25 (2004) 1139-1151. 被引量:1
-
2R.U. Acharya, N. Kannathal, O.W. Sing, Y.P. Luk, T. Chua, Heart rate analysis in normal subjects of various age groups, Biomedical Engineering Online (2004) 3-24. 被引量:1
-
3R.U. Acharya, P.S. Bhat, N. Kannathal, L.C. Min, S. Laxminarayan, Cardiac health diagnosis using wavelet transformation and phase space plots, In: Proceedings of the IEEE Engineering in Medicine and Biology, 2005, pp.3868-3871. 被引量:1
-
4S.M. Pincus, Approximate entropy as a measure of system complexity, Proc. Natl. Acad. Sci. USA 88 (1991) 2297-2301. 被引量:1
-
5S.M. Pincus, I.M. Gladstone, R.A. Ehrenkranz, A regularity statistic for medical data analysis, J. Clin. Monitor 7 (1991) 335-345. 被引量:1
-
6S.M. Pincus, Greater signal regularity may indicate increased system isolation, Math. Bioscil 122 (1994) 161-181. 被引量:1
-
7J.S. Richman, J.R. Moorman, Physiological time-series analysis using approximate entropy and sample entropy, Am. J. Physiol. Heart Circ. Physiol. 278 (2000) 2039-2049. 被引量:1
-
8S. Behnia, A. Akhshani, H. Mahmodi, H. Hobbenagi, On the calculation of chaotic features for nonlinear time series, Chinese Journal of Physics 46 (2008) 394-403. 被引量:1
-
9M. Costa, A.L. Goldberger, C.K. Peng, Multiscale entropy to distinguish physiologic and synthetic RR time series, Comput. Cardiol. 29 (2002) 137-140. 被引量:1
-
10M. Costa, A.L. Goldberger, C.K Peng, Multiscale entropy analysis of biological signals, Phys. Rev. 71 (2005) 1-18. 被引量:1
-
1ALISON.较量级选手 Toyota FT-Bh Concept[J].汽车与驾驶维修(汽车版),2012(4):34-34.
-
2陈道兴,曾树谷,田越,叶庆佟.焦柳线NHH钢轨使用和伤损情况的调查分析[J].铁道建筑,1994,34(5):2-8.
-
3周晓煜,赵保华,屈玉贵.基于构造类别代数的变异分析[J].电子学报,2002,30(12A):2155-2157. 被引量:1
-
4刘宇红,庞伟正.基于神经网络的多用户检测器[J].哈尔滨工程大学学报,2000,21(5):64-67. 被引量:6
-
5改良DFM驱动设计流程,联电推新方案[J].现代表面贴装资讯,2006,5(6):34-34.
-
6霍铖宇,倪黄晶,宁新宝.心率变异时间序列的预处理算法[J].数据采集与处理,2013,28(5):591-596. 被引量:7
-
7Jin Ma,Rumeng Ma,Xiwen Liu,Zhihong Wen,Xiaojing Li,Tao Wang,Wenqiang Han,Wendong Hu,Zuoming Zhang.Correlation between heart rate variability and pupillary reflex in healthy adult subjects under the influence of alcohol[J].Neural Regeneration Research,2011,6(21):1646-1650.
-
8俞志红.Entropy-Fuzzy在公路项目绩效评价中的应用[J].公路与汽运,2011(3):203-206. 被引量:4
-
9石娜.CHF土壤固化剂在道路工程中的应用技术研究[J].山东交通科技,2015(2):67-68. 被引量:1
-
10火力升级[J].汽车测试报告,2010(12):25-25.