期刊文献+

飞机环控/发动机系统多目标优化

Multi-objective Optimization of Environmental Control System and Engine of Aircraft
下载PDF
导出
摘要 提出一种改进的多目标粒子群优化算法,应用于飞机环控/发动机系统的综合优化.将不同飞行阶段系统总熵产最小视为不同的目标函数,建立了多目标优化模型.进而在基本多目标粒子群优化算法基础上,引入跳转操作、族群概念和一种全局最优位置分配方法,提出了一种改进算法,测试结果表明该算法性能良好.采用该算法对多目标优化模型进行计算,得到收敛且分布均匀的非劣最优解集,为飞机系统综合优化提供一种新思路. An improved multi-objective particle swarm optimization algorithm is proposed and applied to the integrated optimization of environmental control system and engine of aircraft.A multi-objective optimization model is established by viewing the total entropy generation minimum at different flight phases as different objectives.Based on the basic multi-objective particle swarm optimization algorithm,an improved algorithm is proposed through a jump and cluster operation,and a new global optimal position distribution method.The simulation results show the good performance of the algorithm.The proposed algorithm is used to compute the multi-objective optimization model,the obtained pareto optimal set has good convergence and diversity. It provide a new way for integrated optimization of aircraft systems.
出处 《应用科学学报》 EI CAS CSCD 北大核心 2011年第4期435-440,共6页 Journal of Applied Sciences
基金 航空科学基金(No.2008ZC01006)资助
关键词 多目标优化 环控系统 发动机系统 粒子群优化 非劣最优解集 multi-objective optimization environmental control system engine system particle swarm optimization pareto optimal set
  • 相关文献

参考文献11

  • 1唐伟,桂业伟,王安龄.飞行器热气动布局优化设计研究[J].宇航学报,2009,30(5):1803-1807. 被引量:10
  • 2RANCRUEL D F. A decomposition strategy based on thermoeconomic isolation applied to the optimal synthesis/design and operation of an advanced fighter aircraft system [D]. Blacksburg: Virginia Polytechnic Institute and State University, 2002: 13-14. 被引量:1
  • 3MOORHOUSE D J. Proposed system-level multidisciplinary analysis technique based on exergy methods [J]. Journal of Aircraft, 2003, 40(1): 11-15. 被引量:1
  • 4DOTY J H, CAMBEKOS J A, 1V[OORHOUSE D J. Benefits of exergy-based analysis for aerospace engineer- ing applications: part 1 [C]//40th Thermophysics Conference, Washington, 2008, AIAA 2008-4355. 被引量:1
  • 5PERIANNAN V. Investigation of the effects of various energy and exergy-based objectives/figures of merit on the optimal design of high performance aircraft system [D]. Blacksburg: Virginia Polytechnic Institute and State University, 2005: 5-8. 被引量:1
  • 6寿荣中,何慧姗编著..飞行器环境控制[M].北京:北京航空航天大学出版社,2004:440.
  • 7孔维健,丁进良,柴天佑.高维多目标进化算法研究综述[J].控制与决策,2010,25(3):321-326. 被引量:50
  • 8BUTT J R. A study of morphing wing effectiveness in fighter aircraft using exergy analysis and global optimization [D]. Blacksburg: Virginia Polytechnic Institute and skate University, 2005: 78-90. 被引量:1
  • 9DEB K. Multi-objective genetic algorithm: problem difficulties and construction of test problems [J]. Evolutionary Computation, 1999, 7(3): 205-230. 被引量:1
  • 10VanVELDHUIZEN D A, LAMONT G B. On measuring multiobjective evolutionary algorithm performance [C]//Congress on Evolutionary computation. [S.l.]: IEEE Press, 2000, 1: 204-211. 被引量:1

二级参考文献57

  • 1唐伟,张勇,李为吉,马强.二次曲线截面弹身的气动设计及优化[J].宇航学报,2004,25(4):429-433. 被引量:40
  • 2唐伟,马强,张勇,李为吉.带控制舵飞行器机动特性研究[J].空气动力学学报,2006,24(1):80-84. 被引量:11
  • 3王安龄,桂业伟,唐伟,金玲.可重复使用飞行器热走廊物理建模研究[J].工程热物理学报,2006,27(5):856-858. 被引量:4
  • 4唐伟.新一代航天机动飞行器气动设计研究[D].[博士论文],西北工业大学,2005. 被引量:1
  • 5Sobieszczanski-Sobieski J, Chopra I. Muhidisciplinary optimization of aeronautical system [ J]. Journal of Aircraft, 1990, 27 (12) : 977 -978. 被引量:1
  • 6Rowell L R, Korte J J. Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment, NASA/TM 2003 - 212654. 被引量:1
  • 7Fonseca C M, Fleming P J. Genetic algorithm for multiobjective optimization: Formulation, discussion and generalization [C]. Proc of 5th ICGA. San Mateo: Morgan Kaufmann Publishers, 1993 : 416-423. 被引量:1
  • 8Deb K, Amrit P, Sameer A, et al. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ [J] IEEE Trans on Evolutionary Computation, 2002, 6(2): 182- 197. 被引量:1
  • 9Zitzler E, Thiele L. Multi-objective evolutionary algorithms: a comparative case study and the strength pareto approach [J]. IEEE Trans on Evolutionary Computation, 1999, 3(4): 257-271. 被引量:1
  • 10Knowles J D, Corne D W. Approximating the nondominated front using the Pareto archived evolution strategy[J]. Evolutionary Computation, 2000, 8 (2) 149-172. 被引量:1

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部