期刊文献+

Web日志分析系统研究 被引量:5

Research on Web Log Analysis System
下载PDF
导出
摘要 Web日志分析系统不仅能改进Web网站结构,提高Web服务器性能,而且能识别用户的喜好、满意度,发现潜在用户,增强网站服务竞争力。介绍了Web日志挖掘的各个阶段,设计并实现了一个Web日志分析系统。分析了传统的频繁项集挖掘算法与序列模式挖掘算法的不足之处,根据日志数据的特性,将用户属性引入频繁项目集的生成过程,有效地减少了候选项集的数目,并根据候选集的特点,逐轮压缩数据库。将连续序列引入到ApiroriAll算法的候选集合并过程中,实现了改进算法。通过实验比较了改进算法与传统算法的效率,证明了改进算法的有效性。 Web log analysis system can not only improve the Web site structure and improve Web server performance,but also identify the user's preferences,satisfaction,identify potential customers and enhance the competitiveness of Web services.The stages of Web log mining are described,and a Web log analysis system is designed and implemented.The shortcomings of traditional frequent itemsets mining algorithm and sequential pattern mining algorithm are analyzed.According to the characteristics of log data,the user attributes are added into the generation process of frequent item sets,effectively reducing the number of candidate items.According to the characteristics of the candidate set,by round of compressed database.ApiroriAll continuous sequence introduced into the algorithm and the process of candidate set.An improved algorithm is implemented.In the experiment,the efficiency of improved algorithm and traditional algorithm is compared,the effectiveness of the improved algorithm is proved.
出处 《计算机技术与发展》 2011年第9期211-215,共5页 Computer Technology and Development
基金 湖北省自然科学基金项目(2010CDB11102)
关键词 日志分析 数据预处理 频繁项目集 序列模式 log analysis data preprocessing frequent itemsets sequential patterns
  • 相关文献

参考文献6

二级参考文献26

共引文献390

同被引文献36

  • 1周建鲲.基于ASP.NET应用系统性能研究与探讨[J].硅谷,2009,2(2). 被引量:2
  • 2王锐,李晶,熊海蕴,绳鹏.基于关联规则的Apriori算法的可视化实现方法[J].计算机工程与设计,2007,28(4):757-759. 被引量:9
  • 3Xu Wei, Huang Ling, Fox A, et al. Detecting Large-scale System Problems by Mining Console Logs[C]//Proceedings of the 22nd ACM SIGOPS Symposium on Operating Systems Principles. New York, USA: ACM Press, 2009: 117-132. 被引量:1
  • 4Yuan Ding, Mai Haohui, Xiong Weiwei, et al. Sherlog: Error Diagnosis by Connecting Clues from Run-time Logs[C]// Proceedings of the 15th Architectural Support for Programming Languages and Operating Systems. New York, USA: ACM Press, 2010: 143-154. 被引量:1
  • 5Yuan Ding, Zheng Jing, Park S, et al. Improving Software Diagnosability via Log Enhancement[C]//Proceedings of the 16th International Conference on Architectural Support for Programming Languages and Operating Systems. New York, USA: ACM Press, 2011: 3-14. 被引量:1
  • 6Beschastnikh I, Brun Y, Schneider S. Leveraging Existing Instrumentation to Automatically Infer Invariant-constrained Models[C]//Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering. New York, USA: ACM Press, 2011 : 267-277. 被引量:1
  • 7Christensen A S, Moiler A, Michael 1. Precise Analysis of String Expressions[C]//Proceedings of the 10th International Conference on Static Analysis. Berlin, Germany: Springer- Verlag, 2003: 1-18. 被引量:1
  • 8Feldthaus A, Moiler A. The Big Manual for the Java String Analyzer[M]. [S. 1 .]: Aarhus University Press, 2009. 被引量:1
  • 9Vallee-Rai R, Hendren L, Sundaresan V, et al, Soot: A Java Optimization Framework[C]//Proceedings of ICAS'99. [S. 1 .]: IBM Press, 1999. 被引量:1
  • 10Blackburn S M, Garner R, Hoffmann C, et al, The DaCapo Benchmarks: Java Benchmarking Development and Analysis[C]# Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-oriented Programing, Systems, Languages, and Applications. Portland, USA: ACM Press, 2006: 169-190. 被引量:1

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部