期刊文献+

基于多尺度-多形状HOG特征的行人检测方法 被引量:2

Pedestrian Detection Based on Multi-Scale and Multi-Shape HOG Features
下载PDF
导出
摘要 提出一种图像中人体快速自动检测方法。提取图像的多尺度-多形状方向梯度直方图(HOG)特征向量,用于描述人体的形状特征,结合Adaboost机器学习法训练级联型分类器,以加速人体的检测过程。相比较传统算法,该方法没有采用静态背景模型,也不是仅仅依赖于易受外部环境因素干扰的颜色信息,从而一定程度地适应了人体姿态变化,以及非结构化环境下常见的光照波动、背景杂乱等不良因素所带来的干扰。实验验证了该方法的准确性和较高的计算效率。 A fast and automatic people detection method is proposed.The multi-scale and multi-shape histogram of oriented gradient(HOG) features are extracted,which serve as a powerful description of human shapes;The extracted features are then fed into a cascade of classifiers trained by Adaboost algorithm to greatly accelerate the people detection scheme.The proposed method is independent from background models as well as color information in images,which is highly unreliable due to disturbance.This method is robust against human posture variances,lightening fluctuations as well as background cluttering.Experimental results validate the favorable performance of high accuracy and computational efficiency of the proposed method.
作者 牛杰 钱堃
出处 《计算机技术与发展》 2011年第9期99-102,106,共5页 Computer Technology and Development
基金 江苏省现代教育技术研究2011年度技术应用重点课题(2011-R-18926)
关键词 方向梯度直方图 行人检测 ADABOOST 机器学习 histogram of oriented gradient pedestrian detection Adaboost machine learning
  • 相关文献

参考文献12

  • 1Siebel N T. Design and Implementation of People Tracking Algorithms for Visual Surveillance Applications [ D ]. UK : The University of Reading,2003. 被引量:1
  • 2Shao X,Zhao H ,Nakamum K,et al. Detection and Tracking of Multiple Pedestrians by Using Laser Range Scanners [ C ]/// Proc of IEEE International Conference on Intelligent Robots and Systems. San Diego, CA, USA: [s. n. ], 2007: 2174- 2179. 被引量:1
  • 3Srinivasan P,Shi J B. Bottom-up recognition and parsing of the human body [ C ]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: [s. n. ] ,2007:1-8. 被引量:1
  • 4Ren X, Berg A C, Malik J. Recovering human body configurations using pairwise constraints between parts[ C]//IEEE Intemational Conference on Computer Vision. Beijing. China: [ s. n. ] ,2005:824-831. 被引量:1
  • 5Dalai N ,Triggs B. Histograms of Orienled Gradients for Human Detection[ C ]// IEEE Cmnputer ,Society Conference on Computer Vision and Pattern Recognition ( CVPR ). [ s. l. ] : [ s. n. ] ,2005:886-893. 被引量:1
  • 6Viola P,Jones M. Rapid object detection using a boosted cascade of simple features [ C ]// IEEE Computer Society Conference on Computer Vision anti Pattern Recognition. [ s. l. ] : [ s. n. ] ,2001. 被引量:1
  • 7Freund Y, Schapire R E. Experiments with a new boosting algorithm[ C ]//Proceedings of the 13th Conference on Machine Learning. Bari, Italy : Morgan Kaufmaml, 1996 : 148-156. 被引量:1
  • 8Mowbray S D, Nixon M S. Automatic Gait Recognition via Fourier Descriptors of Deformable Objects[ C ]// Proc of the 5th International Conference on Audio and Video Based Biometric Person Authentication. Guildford, UK: [ s. n. ] ,2003 : 566 -573. 被引量:1
  • 9Mori G, Belongie S, Malik J. Efficient Shape Matching Using Shape Contexts [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27( 11 ) : 1832-1837. 被引量:1
  • 10Liu D, Chen T. Soft shape context for interative closest point registration [ C ]// International Conference on Image Processing. Singapore : [ s. n. ] ,2004 : 1081 - 1084. 被引量:1

同被引文献7

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部