期刊文献+

闪烁小世界网络上疾病传播的动态行为研究 被引量:2

Dynamical Behavior of Disease Spreading on Blinking Small-World Networks
下载PDF
导出
摘要 将经典的SI(Susceptible-Infected)模型集成到闪烁小世界网络中,分析疾病传播的动态行为。大量的数值仿真表明,长程连接的动态切换能够显著加快感染传播的动态过程,并且切换频率越高,疾病传播也越快。研究结果对于深入理解传染病的传播规律,预防和控制流行病早期在真实复杂网络中的传播具有重要的现实意义。 In this paper,we integrate the classical SI(Susceptible-Infected) epidemic model into the blinking small world networks to analyze the dynamical behavior of disease spreading.Large scale numerical simulations indicate that the frequent switching of long range connections can obviously accelerate the dynamical spreading processes,and the higher the connection switches,the faster the disease spreads.It is great significance of the current results to deeply understand the spreading behavior of infectious diseases,to prevent and control the early outbreaks of epidemics within real complex networks.
出处 《复杂系统与复杂性科学》 EI CSCD 2011年第3期34-37,共4页 Complex Systems and Complexity Science
基金 国家自然科学基金(60904063) 中国博士后科学基金(20090460694) 天津市高等学校科技发展基金(20090813 20090811 20090717) 国家大学生创新实验计划(101006019)
关键词 疾病传播 闪烁效应 小世界网络 动力学行为 disease spreading blinking effect small-world networks dynamical behavior
  • 相关文献

参考文献18

  • 1Eubank S, Guclu H, Kumar V S A, et al. Modeling disease outbreaks in realistic urban social networks [J]. Nature, 2004, 429:180 - 184. 被引量:1
  • 2马知恩等著..传染病动力学的数学建模与研究[M].北京:科学出版社,2004:399.
  • 3Watts D J, Strogatz S H. Collective dynamics of small world networks [J]. Nature, 1998, 393: 440 -442. 被引量:1
  • 4Barabasi A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286:509 -512. 被引量:1
  • 5Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks[J]. Physical Review Letters, 2001, 86 (13) : 3200 - 3203. 被引量:1
  • 6Olinky R, Stone L. Unexpected epidemic threshold in heterogeneous networks: the role of disease transmission [J]. Physics Review E, 2004, 70(3):030902. 被引量:1
  • 7Barth~lemy M, Barrat A, Pastor-Satorras R, et al. Dynamical patterns of epidemic outbreaks in complex heterogeneous networks [J]. Journal of Theoretical Biology, 2005, 235(2): 275- 288. 被引量:1
  • 8王林,李海林.病毒传播模型的瞬态仿真研究[J].复杂系统与复杂性科学,2005,2(2):39-44. 被引量:2
  • 9Li X,Wang X F. Controlling the spreading in small-world evolving networks: stability, oscillation, and topology [J]. IEEE Transactions on Automatic Control, 2006, 51(3): 534 -540. 被引量:1
  • 10Gross T, D'Lima C J D, Blasius B. Epidemic dynamics on an adaptive network [J]. Physical Review Letters, 2006, 96(20) : 208701. 被引量:1

二级参考文献23

  • 1[1]Albert R, Barabási A L. Statistical mechanics of complex networks[ J]. Rev Mod Phys, 2002, 74:47 -97. 被引量:1
  • 2[2]Newman M E J. The structure and function of complex networks[ J]. SIAM Review, 2003, 45:167 -256. 被引量:1
  • 3[3]Evans T S. Complex networks[J/OL]. http:∥arxiv. org/abs/cond-mat/0405123,2004. 被引量:1
  • 4[4]Watts D J, Strogatz S H. Collective dynamics of ‘small world' networks[J]. Nature, 1998, 393:440 -442. 被引量:1
  • 5[5]Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationship of the Internet topology[ J]. Computer Communications Review, 1999, 29:251 -262. 被引量:1
  • 6[6]Liljeros F, Rdling C R, Amaral L A N, et al. The web of human sexual contact[ J]. Nature, 2001, 411: 907 -908. 被引量:1
  • 7[7]Ebel H, Mielsch L I, Borbholdt S. Scale-free topology of e-mail networks[ J]. Phys Rev E, 2002, 66: 035103. 被引量:1
  • 8[8]Sen P, Dasgupta P, Chatterjee A, et al. Small-world properties of the Indian railway network[ J]. Phys Rev E, 2003, 67:036106. 被引量:1
  • 9[9]Moore C, Newman M E J. Epidemics and percolation in small-world networks[ J]. Phys Rev E, 2000, 61:5 678 -5 682. 被引量:1
  • 10[10]Bailey N T J. The Mathematical Theory of Infectious Diseases[ M ]. London: Griffin, 1975. 被引量:1

共引文献1

同被引文献15

  • 1文伟平,卿斯汉,蒋建春,王业君.网络蠕虫研究与进展[J].软件学报,2004,15(8):1208-1219. 被引量:187
  • 2FUHRMAN KM, LAUKO I G, PINTER G A. Asymptotic behavior of an SI epidemic model with pulse removal [J]. Mathematical and Computer Modeling, 2004, 40(3): 371 -386. 被引量:1
  • 3ZHANG Xu, LIU Xianning. Backward bifurcation and global dynamics of an SIS epidemic model with general incidence rate and treatment [J]. Nonlinear Analysis: Real World Applications, 2009, 10: 565- 575. 被引量:1
  • 4SHI Hongjin, DUAN Zhishe, CHEN Guanron. An SIS model with infective medium on complex networks [J]. Physical A, 2008, 387:2133-2144. 被引量:1
  • 5MANOJIT ROY, ROBERT D HOLT. Effects of predation on ihost-pathogen dynamics in SIR Models[J]. Theoretical Population Biology, 2008, 73(3): 319-331. 被引量:1
  • 6KLEINBERG J. The wireless epidemic [J]. Nature, 2007, 449: 287 - 288. 被引量:1
  • 7KEPHART J O. Computers and Epidemiology [J]. IEEE Spectrum, 1993, 30:20 -26. 被引量:1
  • 8STANIFORD S, PAXSON V, WEAVER N. How to own the Internet in your spare time [M]//BONEH D. Proceed- ings of the llth USENIX Security Symposium. New York: ACM Press, 2002:149 - 167. 被引量:1
  • 9ZOU C C, GONG W B, TOWSLEY D. Code red worm propagation modeling and analysis [M] //ATLURI V. Pro- ceedings of the 9th ACM Conference on Computer and Communications Security. New York: ACM Press, 2002:138 - 147. 被引量:1
  • 10SERAZZI G, ZANERO S. Computer virus propagation models [J]. Lecture Notes in Computer Science, 2004, 2965: 26 - 50. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部