期刊文献+

一类算子级数序列赋值收敛性

Sequential Evaluation Convergence of a Class of Operator Series
下载PDF
导出
摘要 对于一类经典的序列空间,引入了一类重要子集,并且该集族一些重要性质被找到.利用该集族性质,获得了一个算子级数序列赋值收敛定理.特别是,结论完全去掉了通常对映射的线性限制,其理论意义重大又大大增加了应用的可能性. For a type of classic sequence space,this paper introduces a class of important subsets,and some important properties of the subset family have been found.By using the properties of the subset family,in this article a sequential evaluation convergence theorem of operator series is obtained.Especially,this article completely drop the linearity restriction forced on the mappings as usual.It is not only very important in theory but also increases much probability of application.
出处 《哈尔滨理工大学学报》 CAS 北大核心 2011年第4期114-117,共4页 Journal of Harbin University of Science and Technology
基金 黑龙江省自然科学基金(G200809A)
关键词 序列赋值收敛 一致消失 全有界 sequential-evaluation convergence uniformly vanishing totally bounded
  • 相关文献

参考文献9

  • 1THORP B L D. Sequential-evaluation Convergence [ J ]. London Math Soc, 1969,44:201 - 209. 被引量:1
  • 2ROLEWICZ S. On Unconditional Convergence of Linear Operators [ J]. Demostratio Math, 1988,21:835 - 842. 被引量:1
  • 3LI Ronglu, CUI Chengri, CHO Minhyung. Improvements of Thorp- Rolewicz Theorems on Operator Series [ J ]. Bull Korean Math,1998,35( 1 ) :75 - 82. 被引量:1
  • 4MADDOX I J. Infinite Matrices of Operators [ M ]. Bertin-Heidl- berg-New York : Springer-Verlag, 1980:20 - 25. 被引量:1
  • 5SWARTZ C. Infinite Matrices and Gliding Hump [ M ]. Singapore- New Jersey-London-Hong Kong: World Sci Press, 1996:50 - 60. 被引量:1
  • 6LI Ronglu. The Strongest Orlicz-Pettis Topology [ J ]. Acta Math. Sinica. ,2000, 43 : 9 - 16. 被引量:1
  • 7LI Ronglu, WANG Fubin, ZHONG Shuhui. The Strongest Intrinsic Meaning of Sequential-evaluation Convergence [ J ]. Topology and Its Applications ,2007,154 : 1195 - 1205. 被引量:1
  • 8LI Ronglu, YANG Yunyan, SWARTZ C. A General Orlicz-Pettis Theorem[J]. Studia Sci. Math. Hungar,2005,42(4) :63 -76. 被引量:1
  • 9王富彬,金鸿章,王辉.一类无穷矩阵变换的刻划[J].数学的实践与认识,2010,40(4):202-210. 被引量:4

二级参考文献2

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部