期刊文献+

基于粒子滤波的RFID室内节点定位跟踪研究 被引量:4

RFID indoor nodes tracking based on particle filtering technology
下载PDF
导出
摘要 为了解决复杂室内环境下的RFID动态节点定位跟踪问题,文中建立了动态节点的运动模型和信号测量模型。仿真采用基于信号RSSI定位方法,结合运用等边三角形定位算法。由于室内射频信号具有较高的噪声污染,因此首先对采集的信号运用粒子滤波技术进行滤波处理,然后运用高斯粒子滤波算法对室内移动的RFID进行了定位跟踪预测。仿真结果表明该算法可以有效地对室内动态节点进行定位跟踪,精度较高,稳定性好,结果进一步说明高斯粒子滤波能有效地抑制室内射频噪声。 In order to solve indoor RFID dynamic node locating and tracking in complex environment,this paper established the indoor dynamic node movement model and signal measurement model.The simulation based on signal strength instructions(RSSI) locating method,combining use an equilateral triangle localization algorithm to locate calculation.Because indoor RF signal has high noise pollution,so first it used particle filter technology for filtering processing,and then use Gaussian particle filtering algorithm to location and tracking forecasts for indoor mobile RFID.The simulation results show that this algorithm can efficiently locate the node on the indoor track dynamic,have high accuracy and good stability,the results add to a weight of evidence on the Gaussian particle filter can effectively suppress indoor RF noise.
出处 《信息技术》 2011年第8期77-80,共4页 Information Technology
关键词 粒子滤波 高斯粒子滤波 室内定位 定位节点 RSSI particle filtering Gaussian particle filtering indoor positioning positioning node RSSI
  • 相关文献

参考文献10

二级参考文献37

  • 1王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:673
  • 2MALLICK M,ARULAMPALAM S.Comparison of nonlinear filtering algorithms in Ground Moving Target Indicator (GMTI) tracking[C] //Proceedings of the 4th International Conference on Information Fusion,Montreal,Canada,2001:11-17. 被引量:1
  • 3GORDON N,SALMOND D,SMITH B A F.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Proceedings F:Radar Signal Process,1993,140:107-113. 被引量:1
  • 4ARULAMPALAM M S,MASKELL S,GORDON N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188. 被引量:1
  • 5CAPPE'O,GODSILL S J,MOULINES E.An overview of existing methods and recent advances in sequential Monte Carlo[J].Proceedings of the IEEE,2007,95(5):899-924. 被引量:1
  • 6PAYNE O,MARRS A.An unscented particle filter for GMTI tracking[C] //IEEE Aerospace Conference Proceedings,Big Sky,Montana,USA,2004:1869-1875. 被引量:1
  • 7ARULAMPALAM M S,GORDON N,ORTON M,et al.A variable structure multiple model particle filter for GMTI tracking[C] //Proceedings of the International Conference on Information Fusion,Annapolis,Maryland,USA,2002:927-934. 被引量:1
  • 8MALLICK M,la SCALA B F.IMM estimator for ground target tracking with variable measurement sampling intervals[C] //Proceedings of the International Conference on Information Fusion,Florence,Italy,2006:1-8. 被引量:1
  • 9GUO Wenyan,HAN Chongzhao.Applications of nonlinear out-of-sequence measurement interpolation filter in GMTI tracking[C] //IEEE Conference on Industrial Electronics and Applications,Taichung,Taiwan,China,2009:3671-3675. 被引量:1
  • 10KOLLER J,ULMKE M.Data fusion for ground moving target tracking[C] //IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems,Heidelberg,Germany,2006:217-224. 被引量:1

共引文献86

同被引文献35

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部