期刊文献+

基于多标签RBF神经网络的电能质量复合扰动分类方法 被引量:24

Recognition of Multiple Power Quality Disturbances Using Multi-Label RBF Neural Networks
下载PDF
导出
摘要 在径向基(RBF)神经网络和C-均值聚类算法的基础上,提出一种适用于电能质量复合扰动分类的多标签排位分类算法—多标签径向基函数法(ML-RBF)。首先,对常见的电能质量扰动及其组合而成的复合扰动进行离散小波分解,提取各层分解系数的规范能量熵作为特征向量;然后采用C-均值聚类算法将所得的特征向量映射为RBF神经网络的输入;最后通过RBF神经网络对该电能质量复合扰动类型进行预测。仿真实验结果表明,在不同的噪声条件下,ML-RBF可以有效分类识别电能质量复合扰动。 A multi-label ranking learning method named ML-RBF is designed to identify the type of multiple power quality disturbances based on RBF neural networks and C-means clustering algorithm.Firstly,several common power quality disturbances and their compound ones are decomposed by discrete wavelet transform,and the norm energy entropy of the wavelet coefficients of each level are extracted as eigenvectors.And then,the eigenvectors are mapped into the input of the RBF neural networks using C-means clustering algorithm.Finally,the type of multiple power quality disturbances is predicted through the RBF neural networks.The simulation results show that ML-RBF can recognize the multiple power quality disturbances effectively under different noise conditions.
出处 《电工技术学报》 EI CSCD 北大核心 2011年第8期198-204,共7页 Transactions of China Electrotechnical Society
基金 国家自然科学基金(50807058) 重庆邮电大学自然科学基金(A2009-41)资助项目
关键词 电能质量 多标签分类 径向基函数 小波变换 C-均值聚类 Power quality multi-label classification RBF wavelet transform C-means clustering
  • 相关文献

参考文献19

  • 1Monedero I, Leon C, Ropero J, et al. Classification of electrical disturbances in real time using neural networks[J]. IEEE Transactions on Power Systems, 2007, 22(3): 1288-1296. 被引量:1
  • 2李庚银,王洪磊,周明.基于改进小波能熵和支持向量机的短时电能质量扰动识别[J].电工技术学报,2009,24(4):161-167. 被引量:48
  • 3刘昊,唐轶,冯宇,马星河.基于时域变换特性分析的电能质量扰动分类方法[J].电工技术学报,2008,23(11):159-165. 被引量:13
  • 4占勇,程浩忠.电能质量复合扰动分类识别[J].电力自动化设备,2009,29(3):93-97. 被引量:17
  • 5Chuang C L, Lu Y L, Huang T L, et al. Recognition of multiple PQ disturbances using dynamic structure neural networks-part 1: theoretical introduction[C]. Proceedings of the IEEE/PES Transmission and Distribution Conference and Exhibition, Dalian, China, 2005. 被引量:1
  • 6Chuang C L, Lu Y L, Huang T L, et al. Recognition of multiple PQ disturbances using dynamic structure neural networks-part 2: implementation and applications[C]. Proceedings of the IEEE/PES Transmission and Distribution Conference and Exhibition, Dalian, China, 2005. 被引量:1
  • 7Lu Y L, Chuang C L, Fahn C S, et al. Multiple disturbances classifier for electric signals using adaptive structuring neural networks [J]. MesurementScience and Technology, 2008, 19(7): 1-11. 被引量:1
  • 8Faisal M F, Mohamed A, Hussain A, et al. Support vector regression based S-transform for prediction of single and multiple power quality disturbances[J]. European Journal of Scientific Research, 2009, 34(2):237-251. 被引量:1
  • 9Lima M A A, Ferreira D D, Cerqueira A S, et al. Separation and recognition of multiple PQ disturbances using independent component analysis and neural networks[C]. The 13th IEEE International Conference on Harmonics and Quality of Power, New South Wales, Australia, 2008. 被引量:1
  • 10Lin W M, Wu C H, Lin C H, et al. Detection and classification of multiple power quality disturbances with wavelet multiclass SVM[J]. IEEE Transactions on Power Delivery, 2008, 23(4): 2575-2582. 被引量:1

二级参考文献43

共引文献68

同被引文献308

引证文献24

二级引证文献340

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部