期刊文献+

基于互信息波段选择和经验模态分解的高精度高光谱数据分类 被引量:6

Mutual Information Bands Selection and Empirical Mode Decomposition Based Support Vector Machines for Hyperspectral Data High-Accuracy Classification
原文传递
导出
摘要 在遥感数据处理研究中,高维高光谱数据的冗余信息和噪声严重影响高光谱数据的分类精度,针对此问题提出基于互信息波段选择和经验模态分解的高精度高光谱数据分类算法(M-IEMD-SVM)。分别采用基于互信息波段选择方法和经验模态分解实现对高光谱数据的冗余信息处理和特征提取,并获得处理后的高光谱数据X″。采用支持向量机分类算法对处理后的高光谱数据X″进行分类实验。仿真实验结果证实MI-EMD-SVM算法不仅提高高光谱数据分类精度,同时还减少支持向量数目,提高高光谱数据分类速度。 In remote-sensing data processing research, redundant information and noise of high-dimensional hyperspectral data affect the classification accuracy of hyperspectral data seriously. To solve this problem, we propose an algorithm of hyperspectral data classification based on band selection with mutual information and empirical mode decomposition (MI-EMD-SVM). Band selection based on mutual information is used to achieve redundant information processing, and empirical mode decomposition (EMD) is used to achieve feature extraction. And the obtained hyperspectral data X″ has been processed. The support vector machines (SVM) classification of the data is classified, which has been processed. Experimental results of the AVIRIS data indicate that the proposed approach improves the classification accuracy of hyperspectral data, significantly reduces the number of support vector, and improves the speed of hyperspectral data classification.
出处 《激光与光电子学进展》 CSCD 北大核心 2011年第9期59-66,共8页 Laser & Optoelectronics Progress
基金 国家自然科学基金(60975009)资助课题
关键词 图像处理 高光谱数据 分类 互信息 波段选择 经验模态分解 分类精度 image processing hyperspectral data classification mutual information band selection empirical mode decomposition classification accuracy
  • 相关文献

参考文献17

  • 1Baofeng Guo, Steve R. Gunn, R. I. Damper et al.. Band selection for hyperspectral image classification using mutual information[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(4) : 522-526. 被引量:1
  • 2韩玲,董连凤,张敏,吴静.基于改进的矩匹配方法高光谱影像条带噪声滤波技术[J].光学学报,2009,29(12):3333-3338. 被引量:27
  • 3刘小刚,赵慧洁,李娜.基于多重分形谱的高光谱数据特征提取[J].光学学报,2009,29(3):844-848. 被引量:26
  • 4李山山,张兵,高连如,彭嫚.基于方差最小的高光谱目标探测算法研究[J].光学学报,2010,30(7):2116-2122. 被引量:13
  • 5J. A. Hoeting, D. Madigan, A. E. Raftery et al.. Bayesian model averaging: a tutorial[J]. Statistical Science, 1999, 14(4) : 382-417. 被引量:1
  • 6G. R. Xuan, X. M. Zhu, P. Q. Chai et al.. Feature selection based on the bhattacharyya distanee[C]. Proceedings of 18th International Conference on Pattern Recognition, Hong Kong, 2006. 1232-1235. 被引量:1
  • 7R. P. W. Duin, M. Loog. Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(6) : 732-739. 被引量:1
  • 8A. Ifarraguerri, M. W. Prairie. Visual method for spectral band selection[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(2): 101-106. 被引量:1
  • 9R. Battiti. Using mutual information for selecting features in supervised neural net learning[J]. IEEE Transactions on Neural Networks, 1994, 5(4) :537-550. 被引量:1
  • 10Nojun Kwak, Chong-Ho Choi. Improved mutual information feature selector for neural networks in supervised learning[C]. Proceeding of 1999 International Joint Conference on Neural Networks, Washington, 1999, 2:1313-1318. 被引量:1

二级参考文献47

共引文献69

同被引文献57

  • 1C. Cortes, V. Vapnik. Support vector networks[J]. Mach. learn. , 1995, 20(3): 273-297. 被引量:1
  • 2F. A. Mianji, Y. Zhang. Robust hyperspectral classitication using relevance vector machine[J].IEEE Trans. (3eosci. Remote Sensing, 2011, 49(6): 2100--2112. 被引量:1
  • 3M. Tipping. Sparse bayesian learning and the relevance vector machine[J]. J. Mack. Learn. Res. , 2001, 1:211-244. 被引量:1
  • 4M. Pal, G. M. Foody. Feature selection for classification of hyperspectral data by SVM[J].IEEE Trans. Geosci. Remote Sensin, 2010, 48(5) : 2297-2307. 被引量:1
  • 5C. M. Bishop, M. E. Tipping. Variational relevance vector machines[C]. San Franciseo: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, 2010. 46-53. 被引量:1
  • 6R. Ram, M. Chetty. A markov-blanket based model for gene regulatory network inferenee[J]. IEEE/ACM Trans. Comput. Biol. , 2011, 8(2): 353-367. 被引量:1
  • 7T. Jaakkola, M. Jordan. Bayesian parameter estimation through variational methods[J]. Start. Gnnput. , 2000, 10(1): 25-37. 被引量:1
  • 8C. Bishop, M. Tipping. Variational relevance vector machines [C]. Proc. 16th Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, 2000. 46-53. 被引量:1
  • 9B. D. Ripley. Neural networks and related methods for classification[J]. J. Roy. Statist. Soc. , 1994, 56(3): 409-456. 被引量:1
  • 10J. Chen, C. Wang, R. Wang. Using stacked generalization to combine SVMs in magnitude and shape feature spaces for classification of hyperspectral data [J]. IEEE Trans. Geosci. Remote Sensing, 2009, 47(7) : 2193-2205. 被引量:1

引证文献6

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部