期刊文献+

The Hot Spots Conjecture on a Class of Domains in R^n with n≥3

The Hot Spots Conjecture on a Class of Domains in R^n with n≥3
原文传递
导出
摘要 In this paper, we define a class of domains in R^n. Using the synchronous coupling of reflecting Brownian motion, we obtain the monotonicity property of the solution of the heat equation with the Neumann boundary conditions. We then show that the hot spots conjecture holds for this class of domains. In this paper, we define a class of domains in R^n. Using the synchronous coupling of reflecting Brownian motion, we obtain the monotonicity property of the solution of the heat equation with the Neumann boundary conditions. We then show that the hot spots conjecture holds for this class of domains.
作者 Peng-fei YANG
机构地区 School of Science
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2011年第4期639-646,共8页 应用数学学报(英文版)
关键词 synchronous coupling reflecting Brownian motion hot spots conjecture Neumann eigenfunctions synchronous coupling, reflecting Brownian motion, hot spots conjecture, Neumann eigenfunctions
  • 相关文献

参考文献10

  • 1Atar, R. Invariant wedges for a two-point reflecting Brownian motion and the "hot spots" problem. Electr. J. of Probab., 6:1-19 (2001). 被引量:1
  • 2Atar, R., Burdzy, K. On Neumann eigenfunction in lip domain, J. Amer. Math. Soc., 17: 243- 265 (2004). 被引量:1
  • 3Atar, R., Burdzy, K. Mirror Couplings and Neumann eigenfunctions. Indiana U. Math. J., 57:1317-1353 (2008). 被引量:1
  • 4Banuelos, R., Burdzy, K. On the "hot spots" conjecture of J. Rauch. J. Func. Anal., 164:1-33 (1999). 被引量:1
  • 5Bass, R., Burdzy, K. Fiber Brownian motion and the "hot spots" problem. Duke Math. J., 105:25-28 (2000). 被引量:1
  • 6Burdzy, K., Chen, Z.-Q. Coalescence of synchronous couplings. Probab. Theory Relat. Fields, 123: 553-578 (2002). 被引量:1
  • 7Burdzy, K., Werner, W. A counterexamplc to the "hot spots" conjecture. Ann. Math., 149:309 317 (1999). 被引量:1
  • 8Jerison, D., Nadirashvili, N. The "hot spots" conjecture for donlains with two axes of sylnmetry. J. Amcr. Math. Soc., 13:741-772 (2000). 被引量:1
  • 9Kawohl, B. Rearrangements and Convexity of Level Sets in PDE. Lecture Notes in Mathematics, Vol. 1150, Springer-Verlag, Berlin, 1985. 被引量:1
  • 10Pascu, M. Scaling coupling of reflecting Brownian motion and the hot spots problem. Trans. Amer. Math. Soc., 354:4681-4702 (2002). 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部