期刊文献+

非线性约束优化问题的自适应差分进化算法 被引量:2

Adaptive differential evolution algorithm for nonlinear constrained optimization problems
下载PDF
导出
摘要 提出了一种非线性约束优化问题改进的自适应差分进化算法。该算法对差分进化算法中固定的加权因子和交叉概率因子进行改进;定义了约束违反度函数,将约束优化问题转化为无约束双目标优化问题,在每次迭代中按照约束违反度的大小保留一部分性能较优不可行粒子,有效地维持了种群的多样性;为了扩大粒子的搜索范围引入变异算子。数值实验表明,新算法具有较快的收敛速度和较好的全局寻优能力。 This paper presents an improved adaptive differential evolution algorithm for the nonlinear constrained optimization problems.In this algorithm,the fixed weighting factor and crossover probability factor of the differential evolution are improved.The constrained optimization problems are converted into unconstrained bi-objective optimization problem by the definition of the constraint violation function.In each iteration,keeping a part of the performance of better infeasible particles is to maintain the diversity of the swarm.Mutation operator is introduced to expand the search range of the particle.Numerical experiments show that the proposed algorithm has faster convergence speed and better ability of global optimization.
作者 李会荣
出处 《计算机工程与应用》 CSCD 北大核心 2011年第25期44-48,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.60962006) 商洛学院科研基金项目~~
关键词 全局最优 非线性约束优化 差分进化 混沌 global optimal nonlinear constrained optimization differential evolution chaotic
  • 相关文献

参考文献20

  • 1雷恒池,魏重,沈志来,张晓庆,金德镇,谷淑芳,李茂伦,张景红.机载微波辐射计测云中液态水含量 (I):仪器和标定[J].高原气象,2003,22(6):551-557. 被引量:18
  • 2Drake J F,Warner J. A theoretical study of the accuracy of tomographic retrieval of cloud liquid with an airborne radiometer[J]. J Atmos Oceanic Tech,1988,5:844-857 被引量:2
  • 3Warner J,J F Drake. Field tests of an airborne remote sensing technique for measuring the distribution of liquid water in convective cloud[J]. J Atmos Oceanic Tech,1988,5:833-843 被引量:2
  • 4Koldaev A V,Yu V Melnichuk,A F Mironov. Remote sensing investigation of cloud liquid water space distribution[C]. Proceedings in 11th International Conference on Cloud and Precipitation[C]. Vol. 1,Montreal:Elsevier Science Publishers,1992. 573 -575 被引量:2
  • 5Decker M T,E R Westwater,F O Guiraud. Experimental evaluation of ground-based microwave radiomewtric sensing of atmospheric temperature and water vapor profiles[J]. J Appl Meteor,1978,17:1788-1795 被引量:2
  • 6黄润恒 邹寿祥.两波段微波辐射计遥感大气的可降水和液态水[J].大气科学,1987,11(4):397-403. 被引量:3
  • 7周秀骥等编著..大气微波辐射及遥感原理[M].北京:科学出版社,1982:178.
  • 8Coello C A C.Theoretical and numerical constraint handling techniques used with evolutionary algorithms: a survey of the state of the art[J].Comput Meth Appl Mech Eng, 2002,191: 1245-1287. 被引量:1
  • 9Deb K,Agrawal S.A niched-penalty approach for constraint han- dling in genetic algorithm[C]//Proc of the Icennga-99, Portorz,1999:234-239. 被引量:1
  • 10He Q,Wang L.An effective co-evolutionary particle swarm op- timization for constrained engineering design problems[J].Engi- neering Applications of Artificial Intelligence, 2007,20(1 ) : 89-99. 被引量:1

二级参考文献43

  • 1魏重,雷恒池,沈志来.地基微波辐射计的雨天探测[J].应用气象学报,2001,12(z1):65-72. 被引量:25
  • 2冯琦,周德云.基于微分进化算法的时间最优路径规划[J].计算机工程与应用,2005,41(12):74-75. 被引量:31
  • 3孔晓红,须文波.基于差分进化算法多处理机任务调度研究[J].微计算机信息,2006(10S):184-186. 被引量:2
  • 4Stron R, Price K. Differential evolution- a simple and efficient adaptive scheme for global optimization over continuous spaces [R]. TechnicalReport TR-95-012, ICSI, 1995. 被引量:1
  • 5Stron R and Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces [J]. Journal of Global Optimization, 1997, 11 : 341 - 359. 被引量:1
  • 6Stron R and Price K. Minimizing the real functions of the ICEC' 96 contest by differential evolution[C]//IEEE Conference on Evolutionary Computation, Nagoya, 1996 : 842 - 844. 被引量:1
  • 7LAMPINEN J. DE's selection rule for multi-objective optimization[R]. Technical Report, Lappeenranta University of Technology, Department of Information Technology, 2001. 被引量:1
  • 8Kukkonen S, Lampinen J. An exension of generalized differential evolution for multi-objective optimization with constraints [ C] // Proceedings of The 8th International Conference on Parallel Problem Solving from Nature (PPSN VIII), Birmingham, Finland, 2004 :752 - 761. 被引量:1
  • 9Kukkonen S, Lampinen J. GDE3: The third evolution step of generalized differential evolution[C]///IEEE Congress on Evolutionary Computation, 2005 : 443 - 450. 被引量:1
  • 10Abbass H A, Sarker R, Newton C. PDE: A pareto-frontier differential evolution approach for multi-objective optimization problems[C]//IEEE Congress on Evolutionary Computation, 2002:971 - 978. 被引量:1

共引文献71

同被引文献22

  • 1Runarsson T P,Yao X.Stochastic ranking for constrained evolutionary optimization[J].IEEE Transactions on Evolu- tionary Computation,2000,4(3) :284-294. 被引量:1
  • 2Storn R,Price K.Differential evolution--a simple and ef- ficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization, 1997, 11 (4) : 341-359. 被引量:1
  • 3Cai Z X, Wang Y.A multiobjective optimization based evolutionary algorithm for constrained optimization[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(6) :658-675. 被引量:1
  • 4Runarsson T P,Yao X.Search biases in constrained evo- lutionary optimization[J].IEEE Transactions on System, Man and Cybernetics, 2005,35 (2) : 233-243. 被引量:1
  • 5Mezura M E, Coello C A,Morales E.Simple feasibility rules and differential evolution for constrained optimi- zation[C]//Lecture Notes in Computer Science, 2004: 707-716. 被引量:1
  • 6Kenedy J, Eberhart R. Particle warm optimization:proceedings of IEEE International Conference on Neural Network 1995, Perth, November 27 - December 1,1995 [ C ]. [ S. 1. ] : IEEE. 1995. 被引量:1
  • 7Storn R, Price K V. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces [ J ]. Journal of Global Optimization 1997,11 : 341 - 359. 被引量:1
  • 8Blnm C. Ant colony optimization: Introduction and recent trends [ J ]. Physics of life reviews, 2005,2 (4) : 353 -373. 被引量:1
  • 9Rao R V, Savsani V J, Vakharia D P . Teaching-learning- based optimization: A novel method for constrained mechanical de- sign optimization problems [ J ]. Computer-Aided Design, 2011,43 : 303 - 315. 被引量:1
  • 10Rao R V, Savsani V J, Vakharia D P. Teaching-Learning-Based Optimization: An optimization method for continuous non-linear large scale problems[J]. Information Sciences, 2012,183:1 -15. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部