期刊文献+

一种基于遗传算法优化小波支持向量回归机的实时寿命预测方法 被引量:4

A Real-Time Lifetime Prediction Method Based on Wavelet Support Vector Regression Optimized by GA
下载PDF
导出
摘要 针对现有实时寿命预测方法没有充分利用同类产品性能退化数据信息的问题,从研究退化轨迹相似性的角度出发,提出一种基于遗传算法(GA)优化小波支持向量回归机(WSVR)的实时退化轨迹建模和寿命预测方法.首先基于GA优化WSVR建立各同类产品的性能退化轨迹模型,然后以特定个体的历史测量时刻向量为基准,计算同类产品的相应退化测量值向量及其与特定个体退化测量值向量的Euclid距离,并根据Euclid距离确定隶属度权值,基于加权思想建立特定个体的退化轨迹模型,最后结合实时测量数据依次更新退化测量值向量、Euclid距离、隶属度权值和退化轨迹模型,实现实时寿命预测.实例分析验证了所提出的方法是有效的. Aiming at the fact that the present real-time lifetime prediction methods do not take full advantage of the same kind of products' performance degradation data,as viewed from the comparability of degradation paths,a real-time lifetime prediction method was proposed on the basis of wavelet support vector regression(WSVR) optimized by genetic algorithm(GA).Firstly,GA-WSVR is employed to build the same kind of products' performance degradation path models.Then the specific individual's historical measure time vector is used as the benchmark,the same kind of products' corresponded degradation measurement vectors are calculated using GA-WSVR models.The Euclid distances of the specific individual and the same kind of products are used to determine degree of membership,so the individual's degradation path model is built on the basis of degree-of-membership weighted method.Finally,the measurement vectors,Euclid distances,degree of membership and degradation path model are updated with real-time measurement data.The proposed method is applied to fatigue crack growth data,the experimental results validate the validity.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2011年第8期1216-1220,1225,共6页 Journal of Shanghai Jiaotong University
基金 国家杰出青年科学基金(61025014) 国家自然科学基金(60736026 61074072)资助项目
关键词 实时寿命预测 性能退化 小波支持向量回归机 遗传算法 real-time lifetime prediction performance degradation wavelet support vector regression(WSVR) genetic algorithm(GA)
  • 相关文献

参考文献14

  • 1胡昌华,许化龙著..控制系统故障诊断与容错控制的分析和设计[M].北京:国防工业出版社,2000:245.
  • 2Si Xiao-sheng, Wang Wen-bin, Hu Chang-hua, et al. Remaining useful life estimation: A review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213(1) : 1- 14. 被引量:1
  • 3Gebraeel N Z, Lawley M A, Liu R, et al. Residual life predictions from vibration based degradation signals: A neural network approach[J].IEEE Transactions on Industrial Electronics, 2004, 51 (3): 694- 700. 被引量:1
  • 4Lu J C, Meeker W Q. Using degradation measures to estimate a time-to-failure distribution[J]. Technometrics, 1993, 35(2):161-174. 被引量:1
  • 5吕克洪,邱静,刘冠军.基于动态损伤及优化AR模型的电子器件寿命预测方法研究[J].兵工学报,2009,30(1):91-95. 被引量:7
  • 6Gebraeel N Z, Lawley M A, Li R, et al. Residuallife distributions from component degradation signals: A Bayesian approach[J] IIE Transactions, 2005, 37 (6) : 843-557. 被引量:1
  • 7Gebraeel N Z. Sensory-updated residual life distributions for components with exponential degradation patterns[J]. IEEE Transactions on Automation Science and Engineering, 2006, 3(4): 382-393. 被引量:1
  • 8Gebraeel N Z, Elwany A, Pan J. Residual life predictions in the absence of prior degradation knowledge [J]. IEEE Transactions on Reliability, 2009, 58 (1) : 106-117. 被引量:1
  • 9尤琦,赵宇,马小兵.产品性能可靠性评估的时序分析方法[J].北京航空航天大学学报,2009,35(5):644-648. 被引量:17
  • 10Xu Z G, Ji Y D, Zhou D H. Real-time reliability prediction for a dynamic system based on the hidden degradation process identification[J]. IEEE Transactions on Reliability, 2008, 57(2): 230-242. 被引量:1

二级参考文献30

  • 1邓爱民,陈循,张春华,汪亚顺.基于性能退化数据的可靠性评估[J].宇航学报,2006,27(3):546-552. 被引量:133
  • 2张艳,黄敏,赵宇,于丹.基于置信分布的系统可靠度评估蒙特卡罗方法[J].北京航空航天大学学报,2006,32(9):1023-1025. 被引量:9
  • 3http: // www. calce. umd. edu/whats- new/upcoming/2004/ workshop/02, pdf. 被引量:1
  • 4Havey G, Louis S, Bruska S. Micro-time stress measurement device development[ R ]. Rome Laboratory Air Force Materiel Command Griffins Air Force Base, New York:US, 1995. 被引量:1
  • 5Mishra S, Ganesan S, Pecht M, et al. Life consumption monitoring for electronics prognostics[ C]//2004 IEEE Aerospace Conference, US:Maryland University Press, 2004,5(5):3455-3467. 被引量:1
  • 6Ramakrishnan A, Pecht M. A life consumption monitoring methodology for electronic systems [ J ]. IEEE Transactions on Components and Packaging Technologies, 2003, 26(3): 625 - 634. 被引量:1
  • 7Kyung-Im Son, Mani Soma. Dynamic life-estimation of CMOS ICS in real operating environment: precise electrical method and MLE[J]. IEEE Transactions on Reliability, 1997, 46(1):31 - 37. 被引量:1
  • 8Project Funded by the European Community under the Competitive and Sustainable Growth Program. Deliverable report 16 of the environmental life cycle information management and acquisition for consumer products[R]. New York: US , 2005. 被引量:1
  • 9Mishra S, Pecht M, Smith T, et al. Life consumption monitoring approach for remaining life estimation [ C ]//European Microelectronics Packaging and Interconnection Symposium, Poland: Cracow, 2002:136 - 142. 被引量:1
  • 10Greitzer F L, Ferryman T A. Predicting remaining life of mechanical systems [ C]//ASME Intelligent Ship Symposium IV, Philadelphia:Pennsylvania, 2001:1611 - 1643. 被引量:1

共引文献52

同被引文献27

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部