摘要
Silica nanococoons with coiled or concentric circular pore channels in the walls attracted much attention, recently. However, the formation of them is not well illustrated. Herein, hollow silica shells with organized pore channels parallel to the shell surface were prepared through a single-templating method using the self-assemblies of a chiral low-molecular-weight amphiphile, L-18Phe6PyBr, as templates under a dilute concentration. These nano- cocoons were characterized using X-ray diffractometer and N2 sorption. The formation of them was clearly shown in the field-emission electron microscopy images which were taken at a low voltage. Moreover, transmission elec- tron microscopy images taken after different reaction times indicated a cooperative self-assemble mechanism. It was also found that the nanocoons were formed from coiled nanoribbons.
Silica nanococoons with coiled or concentric circular pore channels in the walls attracted much attention, recently. However, the formation of them is not well illustrated. Herein, hollow silica shells with organized pore channels parallel to the shell surface were prepared through a single-templating method using the self-assemblies of a chiral low-molecular-weight amphiphile, L-18Phe6PyBr, as templates under a dilute concentration. These nano- cocoons were characterized using X-ray diffractometer and N2 sorption. The formation of them was clearly shown in the field-emission electron microscopy images which were taken at a low voltage. Moreover, transmission elec- tron microscopy images taken after different reaction times indicated a cooperative self-assemble mechanism. It was also found that the nanocoons were formed from coiled nanoribbons.
基金
Project partially supported by the Program of Innovative Research Team of Soochow University, the Jiangsu Planned Projects for Postdoctoral Research Funds (No. 0902027C), the Program for New Century Excellent Talents in University (No. NCET-08-0698), and the National Natural Science Foundation of China (No. 20871087).