期刊文献+

麻醉术中绝对血容量不足临床监测告警系统的设计 被引量:2

Intelligent monitoring system for absolute hypovolemia in anesthesia
下载PDF
导出
摘要 针对临床用麻醉监测告警系统采用的硬阈值算法对绝对血容量不足等并发症评价指标单一,误报率达75%的问题,研制了1个新的实时智能监测告警系统(real-time smart alarms foranesthesia monitoring,RTSAAM)。新系统包含2个诊断模块,一是血压变化告警模块(SPV模块),另一个是基于新算法的统计告警模块,该模块综合了血压、心率、脉量和呼气末CO2浓度等指标,能够提供足够的诊断支持信息,并可随时调节系统灵敏度。通过Kappa分析,在线和离线状态下新系统与麻醉师的诊断结果一致性分别为76%和81%,说明新系统对诊断术中的绝对血容量不足有效。 Patient monitoring in the operating theatre requires a high level of vigilance by anesthetists.The aim of this paper is to report the design of a clinically useful diagnostic system called real-time smart alarms for absolute hypovolemia in anesthesia monitoring(RTSAAM).The system provides decision support to the anesthetist by presenting the diagnostic results on an integrative,ergonomic display that is hoped to enhance patient safety.The performance of the system is assessed by both offline testing and real-time testing in the operation theatre.When detecting absolute hypovolemia(AHV) a satisfactory level of agreement(up to 81%) is observed between RTSAAM and the anesthetist.
作者 余炜 曾孝平
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第8期43-47,65,共6页 Journal of Chongqing University
基金 国家自然科学基金资助项目(60971016)
关键词 麻醉 智能监测 血压变化检测 血容量不足 anesthesiology intelligent monitoring blood pressure absolute hypovolemia
  • 相关文献

参考文献14

  • 1JARDINS T D. Cardiopulmonary anatomy and physiology (4^th ed) [M]. Florence, KY: Delmar Pub, 2001. 被引量:1
  • 2REASON J. Safety in the operating theatre-part 2: human error and organisational failure[J].Current Anaesthesia and Critical Care, 1995,6 (2) : 56-60. 被引量:1
  • 3BARRO S,PRESEDO J,CASTRO D, et al. Intelligent telemonitoring of critical-care patients[J].Engineering in Medicine and Biology Magazine, 1999, 18(4) : 80-88. 被引量:1
  • 4JEFFREY B C, RONALD S N, CHARLENE D L, et al. Preventable anesthesia mishaps: a study of human factors[J]. Quality and Safety in Health Care, 2002, 11 (3):277 -279. 被引量:1
  • 5LOWE A, HARRISON M J. Computer-enhanced diagnosis of malignant hyperpyrexia [J]. Anaesthesia and Intensive Care,1999,27(1) :41 -45. 被引量:1
  • 6NAVABI M J,WATT R C, et al. anesthesia heart rate and ECG monitoring and event recognition using neural network and algorithmic methods [C] // The 12^th Annual International Conference of the IEEE Engineering in Medical and Biological Society, November 1-4, 1990, Philadelphia. Pennsylvania, USA: Institute of Electrical and Electronic Engineers,2002,08 : 2000-2001. 被引量:1
  • 7HOFFMAN R R,YATES J F. Decision making humancentered computing [J]. Intelligent Systems, IEEE, 2005,20 (4) : 76-83. 被引量:1
  • 8JONES R W, HARRISON M J, LOWE A. Computerised anaesthesia monitoring using fuzzy trend templates[J]. Artificial Intelligence in Medicine, 2001, 21(1/3):247-251. 被引量:1
  • 9KALPAKAM N V, VENKATARAMANAN S. EEG signal processing for modern wireless patient monitoring [C/OL] //27th Annual International Conference of the IEEE Engineering in Medicine and Biology, Shanghai, China, September 1 4,2005. http:// www. researchgate. net/publication/4144898_ EEG_ signal_ processing_ for_ modern_wireless_patientmonitoring. 被引量:1
  • 10GRANT P, NAESH O. Fuzzy logic and decision-making in anaesthetics [J]. Journal of the Royal Society of Medicine,2005,98(1) :7 -9. 被引量:1

同被引文献27

引证文献2

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部