期刊文献+

Global Solutions of Shock Reflection by Wedges for the Nonlinear Wave Equation

Global Solutions of Shock Reflection by Wedges for the Nonlinear Wave Equation
原文传递
导出
摘要 When a plane shock hits a wedge head on, it experiences a reflection-diffraction process and then a self-similar reflected shock moves outward as the original shock moves forward in time. In this paper, shock reflection by large-angle wedges for compressible flow modeled by the nonlinear wave equation is studied and a global theory of existence, stability and regularity is established. Moreover, C^0,1 is the optimal regularity for the solutions across the degenerate sonic boundary.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2011年第5期643-668,共26页 数学年刊(B辑英文版)
基金 supported by China Scholarship Council (Nos. 2008631071,2009610055) the EPSRC Science and Innovation Award to the Oxford Centre for Nonlinear PDE (No. EP/E035027/1)
关键词 Compressible flow Conservation laws Nonlinear wave system Regularreflection 非线性波动方程 可压缩流动 衍射过程 自相似 大角度 稳定性 移动 反射
  • 相关文献

参考文献1

二级参考文献2

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部