期刊文献+

综合节点异质性、删除及DPA的网络演化模型 被引量:5

Evolving network model of integrating three mechanisms:Node otherness,uniform node deletion and double preferential attachment
下载PDF
导出
摘要 曾分别研究节点适应度的择优连接、节点的删除及两端择优连接(double preferential attachment,DPA)3种网络演化机制,在现实网络中它们显著并存,文章构建综合这3种机制的网络演化模型,并对该模型进行数理推导,求出度分布,而且将经典的BA网络一般化.结果显示,建立的综合模型具有无标度特性,3种演化机制对网络的度分布具有不同的影响,且利用仿真方法验证了结果. The researches on the complex evolving network models have been researched separately based on the mechanisms of node otherness,uniform node deletion or double preferential attachment(DPA).Nevertheless,these three mechanisms of evolving network exist simultaneously in the real network.This paper established an evolving network model by integrating the three mechanisms.The article performed analytic deductions,calculated the degree distribution,and generalized the scale-free model.Finally,the results show that the comprehensive model has the scale-free feature,and the three evolving mechanisms have different influences on the degree distribution of networks,which were also validated by simulations.
出处 《管理科学学报》 CSSCI 北大核心 2011年第8期1-7,16,共8页 Journal of Management Sciences in China
基金 国家社会科学基金资助项目(10BGL032) 中国工程院信息与电子工程学部咨询资助项目
关键词 节点异质性 节点删除 DPA 网络演化 node otherness uniform node deletion DPA evolving networks
  • 相关文献

参考文献23

  • 1成思危.复杂科学与系统工程[J].管理科学学报,1999,2(2):1-7. 被引量:200
  • 2Boccaletti S, Latora V, Moreno Y, et al. Complex networks: Structure and dynamics[ J]. Physics Reports, 2006, 424(4/ 5): 175-308. 被引量:1
  • 3Barabasi A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439) : 509 -512. 被引量:1
  • 4吴金闪,狄增如.从统计物理学看复杂网络研究[J].物理学进展,2004,24(1):18-46. 被引量:250
  • 5Bianconi G, Barabasi A L. Competition and muhiscaling in evolving networks[ J]. Europhysics Letters, 2001,54(4) : 436 -442. 被引量:1
  • 6Sarshar N, Roychowdhury V. Scale-free and stable structures in complex ad hoc networks [ J ]. Physical Review E, 2004, 69 ( 2 ) : 357 - 368. 被引量:1
  • 7Chung F, Lu L. Coupling online and offline analyses for random power law graphs[J]. Intemet Mathematics, 2003 -2004, 1(4) : 409 -461. 被引量:1
  • 8Cooper C, Frieze A, Vera J. Random deletion in a scale-free random graph process [ J ]. lntemet Mathematics, 2003 - 2004, 1(4) : 463 -483. 被引量:1
  • 9Moore C, Ghoshal G, Newman M E J. Exact solutions for models of evolving networks with addition and deletion of nodes [J]. Physical Review E, 2006, 74(3) : 557 -568. 被引量:1
  • 10Deng K, Zhao H, Li D. Effect of node deleting on network structure[J]. Physiea A, 2007, 379(2) : 714 -726. 被引量:1

二级参考文献103

共引文献514

同被引文献61

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部