期刊文献+

关于k-优美图一个猜想的证明 被引量:1

A Proof of a Conjecture About k-graceful Graph
下载PDF
导出
摘要 二分图是一类有着广泛应用的图,但这类图并不都是优美图,因此需要进一步深入研究它的优美性。本文根据马克杰教授提出的猜想:完备二分图Km,n的冠是k-优美图(m≤n,k≥2),利用构造法证明了当m=1或m=2,k≥2时,猜想成立;当m≥3,k≥(m-2)(n-1)时,猜想成立。拓展了k-优美性的研究范围。 Bipartite graphs are widely applied,but not all bipartite graphs are graceful graphs.Therefore,it is necessary to research their gracefulness further.Based on the conjecture put forwarded by professor Ma Kejie that crown of complete bipartite graphs is k-graceful(m≤n,k≥2),the conjecture is proved by construction method when(m=1or 2,k≥2);(m≥3,k≥(m-2)(n-1)) in the paper.The k-graceful research rang is extended.
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2011年第5期81-84,1,共4页 Journal of Henan University of Science And Technology:Natural Science
基金 河南省自然科学基金项目(0511013800)
关键词 完备二分图 k-优美值 K-优美图 Complete bipartite graphs Crown k-graceful value k-graceful graphs.
  • 相关文献

参考文献14

  • 1Ringel G. Problem 25 in Theory of Graph and Its Applications [ M ]. Smolenice:Proc Symposium Smolencie, 1963:162 - 167. 被引量:1
  • 2Rosa A. On Certain Valuations of the Vertices of a Graph Theory of Graphs Proc [ M ]. Internat:Sympos Rome, 1966:349 - 355. 被引量:1
  • 3Golomb S W. How to Number a Graph : Graph Theory and Computing[ M ]. Now York : Academic Press, 1972:23 - 37. 被引量:1
  • 4Gnanajothi R B. Topic in Graph Theory[ D]. Thesis: Madurai Kamaraj University, 1991. 被引量:1
  • 5Bermond J C. Graph Theory and Combinatorics [ M ]. London : Ptiman, 1979 : 13 - 37. 被引量:1
  • 6Kotzig A. Recent Results and Open Problems in of Graceful [ J]. Congressus Nnmerantium, 1984,44 : 197 - 219. 被引量:1
  • 7Gallian J A. A Dynamic Survey of Graph Labeling[ EB]. The Electronic Journal of Combinatorics,2000. 被引量:1
  • 8康庆德.图标号问题[J].河北师范学院学报(自然科学版),1991(1):102-115. 被引量:35
  • 9康庆德.积图P_m×C_(4n)的k-优美性[J].Journal of Mathematical Research and Exposition,1989,9(4):623-627. 被引量:8
  • 10徐俊明编著..图论及其应用[M].合肥:中国科学技术大学出版社,2004:265.

二级参考文献14

  • 1冯爱芬,杨万才.K_3与偏k-树乘积的树宽[J].辽宁师范大学学报(自然科学版),2005,28(3):273-275. 被引量:1
  • 2原晋江,林诒勋.圈幂补图的带宽与拓扑带宽[J].厦门大学学报(自然科学版),1996,35(1):130-132. 被引量:6
  • 3Gallian A. A dynamic survey of graph labeling. The Electronic Journal of Combinatorics, 2000, 12: 1-95. 被引量:1
  • 4MA Kejie. Graceful Graph. Peking: Peking University Press, 1991. 被引量:1
  • 5Ringel G. Problem 25 in theory of graphs and its application. Proc. Symposium Smolenice, Smolenice, 1963. 被引量:1
  • 6Rosa A. On certain valuations of vertices of a graph: Theory of Graphs. Proc. Internat. Sympos., Rome, 1966. 被引量:1
  • 7Golom B S W. How to number a graph: Graph Theory and Computing. Academic Press, New York, 1972. 被引量:1
  • 8Gallian A. A guide to the graph labeling zoo. Discrete Mathematics, 1994, 49:213-229. 被引量:1
  • 9Kathie San Km. Two classes of graceful graphs. Ars. Combinatioria, 2000, 55: 129-132. 被引量:1
  • 10Frank Hsu D. Harmonious labelings of windmill graphs and related graphs. Journal of Graph Theory. 1982, 6(1): 85-87. 被引量:1

共引文献66

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部