期刊文献+

湍流降质图像的帧选研究

Frame Selection Research of the Turbulence Degraded Images
下载PDF
导出
摘要 在多帧图像复原中,一些观测图像质量较差,不能改善复原图像的质量,反而会使复原结果恶化,因此在复原前需要对其进行帧选。在对各种图像质量评价指标进行深入分析的基础上,提出了梯度和信息熵相结合的帧选准则。实验结果表明:帧选后的复原结果明显优于未帧选的复原结果,从而证明了文章所确定的帧选准则的合理性。 For the multi-frame image restoration, some observed images are so bad that they will make the quality of the restored images worse rather than improve them. Therefore, before the restoration, it is needed to select the observed images first. Based on the analysis of some image quality standards, this paper presents the image selecting criterion considering both the grades and the Shannon entropy. The experiment result shows that the restored image with the selected images is much better than that with the unselected images. So the result proves the validity of the image selecting criterion.
出处 《信息工程大学学报》 2011年第4期488-493,共6页 Journal of Information Engineering University
基金 国家自然科学基金资助项目(60778051)
关键词 湍流降质图像 帧选 图像复原 多帧图像解卷积 turbulence degraded images frame selection image restoration multi-frame image deconvolution
  • 相关文献

参考文献9

  • 1张航,罗大庸.图像盲复原算法研究现状及其展望[J].中国图象图形学报(A辑),2004,9(10):1145-1152. 被引量:53
  • 2Ayers G R, Dainty J C. herative blind deconvolution method and its applications [ J ]. Optics Letters, 1988, 13 (7) : 547-549. 被引量:1
  • 3Ingleby H R, McGaughey DR. Experimental results of parallel multiframe blind deconvolation using wavelength diversity [C]//Proc. SPIE2004.2004: 8-14. 被引量:1
  • 4谭兵..多帧图像空间分辨率增强技术研究[D].解放军信息工程大学,2004:
  • 5徐青编..遥感影像融合与分辨率增强技术[M].北京:科学出版社,2007.
  • 6冈萨雷斯.数字图像处理(Matlab版)[M].北京:电子工业出版社,2003:108-193. 被引量:5
  • 7王昱.数字遥感影像构像质量评价方法初探[J].遥感信息,2000,22(4):32-33. 被引量:21
  • 8Charbonnier P, Blanc Feraud L. Deterministie edge-preserving regularization in computed imaging [ J]. IEEE Trans. Image Processing, 1997,6(2) : 198-211. 被引量:1
  • 9陈波..自适应光学图像复原理论与算法研究[D].解放军信息工程大学,2008:

二级参考文献65

  • 1Jordi Sole, Anisse Taleb, Christian Jutten. Parametric Approach to Blind Deconvolution of Nonlinear Channels[A]. In:ESANN'2000-European Symposium on Artificial Neural Networks[C], Bruges, Belgium, 2000 : 26 - 28. 被引量:1
  • 2Haritopoulos Michel, Yin Hujun, Allinson M. Image denoising using self-organizing map-based nonlinear independent component analysis[J]. Neural Networks,2002,15(8-9):1085-1098. 被引量:1
  • 3Lun Daniel P K, Hsung T C, Shen T W. Orthogonal discrete periodic Radon transform. Part I: Theory and realization [J].Signal Processing, 2003,83 (5) : 941 - 955. 被引量:1
  • 4Lun Daniel P K, Hsung T C, Shen T W. Orthogonal discrete periodic Radon transform. Part I : applications [J]. Signal Processing, 2003,83(5) : 957-971. 被引量:1
  • 5Krell Gerald, Herzog Andreas, Michaelis Bernd. An artificial nervous network for real-time image restoration[A]. In:IEEE Instrumentation and Measurement Technology Conference[C],Brussels, Belgium, 1996. 被引量:1
  • 6Lagendijk R L, Tekalp A M, Biemond J. Maximum likelihood image and blur identification: A unifying approaeh[J]. Optical Engineering, 1990,29(5) :422-435. 被引量:1
  • 7Reeves S, Mersereau R. Blur identification by the method of generalized cross-validation [J]. IEEE Transactions on Image Processing, 1992,1(3) : 301 - 311. 被引量:1
  • 8Choand C M, Don H S. Blur identification and image restoration using a multilayer neural network[A]. In: IEEE International Joint Conference on Neural Networks [C], Singaproe, 1991,3:2558-2563. 被引量:1
  • 9Qidwai. Uand Chen C-H. Blind Image Restor-ation for Ultrasonic C-Scan Using Constrained 2D-HOS [A]. In: IEEE International Conference on Acoustics Speech and Signal Processing[C], Salt Lake, UT, USA, 2001,6:3405-3408. 被引量:1
  • 10Slock D T M, Papadias C B. Further results on blind identification and equalization of multiple FIR channels[A]. In:Proceedings of International Conference on Acoustics, Speech and Signal Processing[C], Detroit MI USA, 1995 : 1964-1967. 被引量:1

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部