期刊文献+

基于主元空间数据重构的传感器故障识别及应用 被引量:1

Application of Fault Identification for Sensors Based on Data Reconstruction in Principal Component Space
下载PDF
导出
摘要 针对基于主元分析的过程性能监控方法没有充分利用主元模型信息,以及基于SPE的信息重构故障诊断方法只利用了残差空间信息的局限性,通过定义故障子空间,对基于T2统计量的主元空间故障数据重构技术进行分析,得到故障可完全重构的条件及指标,从而计算出故障识别指标。将其应用于发酵过程的传感器故障识别,结果表明,该算法能够有效地找到故障源。 The limitations of PCA-based statistical monitoring approach omitting the principle model information,and that of the SPE-based fault diagnosis employing residual spatial information only were analyzed,together with the T2 statistic-based fault reconstruction technology by defining fault subspace,then,the theoretical conditions and index of reconstruction and identifiability were obtained.The results show that the approach applied to fermentation process can identify sensor's fault source effectively.
出处 《化工自动化及仪表》 CAS 北大核心 2011年第1期44-47,共4页 Control and Instruments in Chemical Industry
基金 国家科技部"863"计划项目(2007AA10Z241)
关键词 发酵过程 主元空间(PCS) 故障重构 故障识别 fermentation process principal component space(PCS) fault reconstruction fault identification
  • 相关文献

参考文献12

二级参考文献39

共引文献54

同被引文献16

  • 1周华,李秀喜,钱宇.石油化工过程安全技术研究进展[J].化工进展,2008,27(10):1498-1504. 被引量:17
  • 2郑小霞,钱锋.动态系统故障诊断技术的研究与发展[J].化工自动化及仪表,2005,32(4):1-7. 被引量:20
  • 3王宏,柴天佑,丁进良,布朗·马丁.数据驱动的故障诊断与容错控制:进展与可能的新方向(英文)[J]自动化学报,2009(06). 被引量:1
  • 4Kourti T.Application of Latent Variable Methods toProcess Control and Multivariate Statistical ProcessControl in IndustryInternational Journal of Adap-tive Control and Signal Processing,2005. 被引量:1
  • 5Zumoffen D,Basualdo M.From Large Chemical PlantData to Fault Diagnosis Integrated to DecentralizedFault Tolerant Control:Pulp Mill Process ApplicationIndustry and Engineering Chemistry Research,2008. 被引量:1
  • 6Venkatasubramanian V,Rengaswamy R,Kewen Y,et al.A review of process fault detection and diagnosis Part Ⅰ: Quantitative model-based methodsComputers and Chemistry,2003. 被引量:1
  • 7Venkat Venkatasubramanian,Raghunathan Rengaswamy,Surya N Kavuri.A review of process fault detection and diagnosis Part II: Qualitative models and search strategiesComputers and Chemistry,2003. 被引量:1
  • 8S. Joe Qin.Statistical process monitoring: basics and beyondJournal of Chemometrics,2003. 被引量:1
  • 9Li WH,Yue HH,Valle-Cervantes S,Qin SJ.Recursive PCA for adaptive process monitoringJournal of Process Control,2000. 被引量:1
  • 10S Valle,W Li,SJ Qin.Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methodsIndustrial and Engineering Chemistry Research,1999. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部