摘要
将自然单元法与刚(粘)塑性流动理论相结合,对自然单元法在金属塑性成形过程数值模拟中的应用进行了研究。采用基于Voronoi图和Delaunay三角化结构的Non-Sibsonian插值方法构造近似速度场向量,实现无网格方法中速度边界条件的直接精确施加,提出了基于刚(粘)塑性流动理论的无网格自然单元法。运用不完全广义变分原理,采用罚函数法实现体积不变条件,推导出基于刚(粘)塑性流动理论的无网格自然单元法的离散控制方程,并给出了基于刚(粘)塑性流动理论的自然单元法及其关键算法,拓展了自然单元法的应用范围。典型算例的数值计算结果表明了该方法的可行性和有效性。
The properties of interpolation of nodal data, ease of imposing essential boundary conditions, not needing any user-defined parameters, and the computational efficiency are some of the most important advantages of natural element method. A new method for simulating the metal forming process is given by combining natural element method with the flow theory of rigid plastie/viscoplastic mechanics. Accurate imposition of velocity boundary conditions is accomplished directly by constructing vector of the displacement field by using the non-Sibsonian interpolation method, which are based on the Voronoi diagram and its dual Delaunay tessellation. The discrete governing equations of natural element method are developed by utilizing the generalized variational principle of rigid plastic/viseoplastic materials and accomplishing the incompressibility constraint condition by penalty method. The numerical simulation of a plain strain upset forging reveals the effectiveness and feasibility of the present method.
出处
《计算力学学报》
EI
CAS
CSCD
北大核心
2011年第4期596-600,共5页
Chinese Journal of Computational Mechanics
基金
国家自然科学基金(50905098)
山东省自然科学基金(ZR2010EM032)
山东省中青年科学家科研奖励基金(BS2009CL047)资助项目