期刊文献+

基于刚(粘)塑性流动理论的自然单元法研究 被引量:3

Natural element method based on flow theory of rigid plastic/viscoplastic mechanics
下载PDF
导出
摘要 将自然单元法与刚(粘)塑性流动理论相结合,对自然单元法在金属塑性成形过程数值模拟中的应用进行了研究。采用基于Voronoi图和Delaunay三角化结构的Non-Sibsonian插值方法构造近似速度场向量,实现无网格方法中速度边界条件的直接精确施加,提出了基于刚(粘)塑性流动理论的无网格自然单元法。运用不完全广义变分原理,采用罚函数法实现体积不变条件,推导出基于刚(粘)塑性流动理论的无网格自然单元法的离散控制方程,并给出了基于刚(粘)塑性流动理论的自然单元法及其关键算法,拓展了自然单元法的应用范围。典型算例的数值计算结果表明了该方法的可行性和有效性。 The properties of interpolation of nodal data, ease of imposing essential boundary conditions, not needing any user-defined parameters, and the computational efficiency are some of the most important advantages of natural element method. A new method for simulating the metal forming process is given by combining natural element method with the flow theory of rigid plastie/viscoplastic mechanics. Accurate imposition of velocity boundary conditions is accomplished directly by constructing vector of the displacement field by using the non-Sibsonian interpolation method, which are based on the Voronoi diagram and its dual Delaunay tessellation. The discrete governing equations of natural element method are developed by utilizing the generalized variational principle of rigid plastic/viseoplastic materials and accomplishing the incompressibility constraint condition by penalty method. The numerical simulation of a plain strain upset forging reveals the effectiveness and feasibility of the present method.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2011年第4期596-600,共5页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(50905098) 山东省自然科学基金(ZR2010EM032) 山东省中青年科学家科研奖励基金(BS2009CL047)资助项目
关键词 刚(粘)塑性流动理论 自然法单元法 Non—sibsonian插值 金属塑性成形 数值模拟 flow theory of rigid plastic/viscoplastic mechanics natural element method non-sibsonian interpolation metal forming process numerical simulation
  • 相关文献

参考文献13

  • 1王建华,张英新,高绍武.三维弹塑性自然单元法算法实现[J].计算力学学报,2006,23(5):594-598. 被引量:6
  • 2左旭,卫原平,陈军,阮雪榆.金属体积成形三维数值仿真的研究进展[J].力学进展,1999,29(4):549-556. 被引量:8
  • 3彭颖红..金属塑性成形仿真技术[M],1999.
  • 4D. Bueche,N. Sukumar,B. Moran.Dispersive properties of the natural element method[J]. Computational Mechanics . 2000 (2-3) 被引量:1
  • 5Xiong S W,Li C S,Rodrigues J M C,et al.Steady andnon-steady state analysis of bulk forming processesby the reproducing kernel particle method. FiniteElements in Analysis and Design . 2005 被引量:1
  • 6Li SF,Liu WK.Meshfree and particle methods and their applications. Journal of Applied Mathematics . 2002 被引量:1
  • 7Bonet J,Kulasegaram S.Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. International Journal for Numerical Methods in Engineering . 2000 被引量:1
  • 8Li G Y,Belytschko T.Element-free Galerkin method for contact problems in metal forming analysis. Engineering Computations . 2001 被引量:1
  • 9Sukumar N,Moran B,Belytschko T.The natural element method in solid mechanics. International Journal for Numerical Methods in Engineering . 1998 被引量:1
  • 10Sukumar N,Moran B,Semenov AY,et al.Natural neighbour Galerkin methods. International Journal for Numerical Methods in Engineering . 2001 被引量:1

二级参考文献22

共引文献12

同被引文献35

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部