期刊文献+

基于率失真理论的模糊聚类模型与算法

Fuzzy Clustering Model and Algorithm Based on Rate Distortion Theory
下载PDF
导出
摘要 本文从信息论的角度考虑了聚类问题,将聚类看成是有损信息压缩的过程。首先运用率失真理论建立了模糊聚类的优化模型,与经典的模糊聚类模型相比,模型的目标函数中多了一个描述聚类过程复杂度的指标。同时为了估计聚类数目,还提出了一个新的聚类有效性指标。其次通过求解优化模型得到基于率失真理论的模糊聚类算法。最后将基于率失真理论的模糊聚类算法与经典模糊C均值算法进行了数值实验比较。数值实验结果表明基于率失真理论的模糊聚类算法能够自动确定聚类数目,在运行时间上比模糊C均值算法有一定减少,且最终的模糊划分矩阵与模糊C均值算法相比有较少的模糊性,因而聚类结果更加明确可靠。 Clustering is considered as a process of lossy compression from an information theory perspective in this paper.Firstly an optimization model of fuzzy clustering is built by using the rate distortion theory.Comparing to the classic fuzzy clustering model,the new model introduces a new index in the objective function which describes the complexity of clustering process.In order to estimate the number of clusters,a new cluster validity index is also proposed.Then the fuzzy clustering algorithm based on rate distortion theory is obtained by solving the optimization model.Finally some numerical experiments are made to compare the fuzzy clustering algorithm based on rate distortion theory with fuzzy c-means.The experimental results indicate that the fuzzy clustering algorithm based on rate distortion theory can estimate the number of clusters automatically and it also has less running time than fuzzy c-means.Moreover,membership assignments of the proposed algorithm based on rate distortion theory are less confused than fuzzy c-means,which makes the result more definite and reliable.
出处 《情报学报》 CSSCI 北大核心 2011年第8期812-818,共7页 Journal of the China Society for Scientific and Technical Information
基金 国家自然科学基金资助项目(70871015) 国家高技术研究发展计划(863计划)资助项目(2008AA04Z107)
关键词 模糊聚类 率失真理论 互信息 聚类数目 fuzzy clustering rate distortion theory mutual information number of clusters
  • 相关文献

参考文献16

  • 1Han J W, Kamber M. Data Mining: Concepts and Techniq- ues,Second Edition [ M ]. San Francisco : Morgan Kaufm- ann, 2006. 被引量:1
  • 2Ruspini E H. A new approach to clustering [ J ]. Informa- tion Control, 1969,15( 1 ) :22-32. 被引量:1
  • 3高新波著..模糊聚类分析及其应用[M].西安:西安电子科技大学出版社,2004:214.
  • 4Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters [ J ].Journal of Cybernetics, 1973,3 ( 3 ) :32-57. 被引量:1
  • 5Bezdek J C. Pattern Recognition with Fuzzy Objective Fun- ction Algorithms [ M ]. New York : Plenum Press, 1981. 被引量:1
  • 6Li R P,Mukaidono M. A maximum-entropy approach to fuzzy clustering [ C ]//Proceedings of the IEEE Interna- tional Conference on Fuzzy Systems, 1995:2227-2232. 被引量:1
  • 7Cover T M,Thomas J A. Elements of Information Theory [ M ]. New York : Wiley, 1991. 被引量:1
  • 8Slonim N, Atwal G S, Tkacik G, et al. Information-based clustering [ J]. Proceedings of the National Academy of Sciences ,2005,102(51 ) : 18297-18302. 被引量:1
  • 9Bezdek J C. Numerical taxonomy with fuzzy sets [ J]. Ma- thematical Biology, 1974,1 ( 1 ) : 57-71. 被引量:1
  • 10Bezdek J C. Cluster validity with fuzzy sets [ J ]. Cyber- netics and System, 1974,3 ( 3 ) :58-73. 被引量:1

二级参考文献2

共引文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部