摘要
非线性时间差方程组的求解方法是发展电力变压器局部放电特高频定位技术的重要研究内容之一。对时延误差敏感、局部收敛或发散、运算时间长是现有定位算法中面临的主要难点。为了克服这3个难点,提出了复数域内牛顿迭代算法。给出了特高频定位计算模型和基于最小二乘原理的约束条件表达式;阐明了复数域内牛顿迭代算法的原理,并给出了公式;在真实变压器上开展了局部放电定位试验和计算,验证了此算法的有效性。研究结果表明,复数式牛顿迭代算法克服了现有定位算法面临的三大难题,是求解非线性定位方程组的一种好方法。
The algorithm of solving nonlinear time-delay-equations is an important research field in developing the ul- tra-high-frequency [UHF) technology o{ locating partial discharge {PD} in transformers. At present, major prob- lems existing in locating algorithms are being sensitive to time-delay error, local convergence or divergence and a large amount of computational load and time. To solve these problems, Newton iteration algorithm running in com- plex field is suggested. The mathematical model for computing PD location is established, the constrained conditions are put forward according to the least squares method. Newton iteration algorithm running in complex field is inter- preted by formulas. Finally, PD location experiments and calculations are carried out on a real power transformer to verify the algorithm. It is concluded that, by using Newton method in complex field, the three major problems exi- ted in available locating algorithms are solved and the global optimal solution is obtained in high speed. Newton method in complex field is a better algorithm for PD location.
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2011年第8期2017-2023,共7页
High Voltage Engineering
基金
国家重点基础研究发展计划(973计划)(2009CB724508)~~
关键词
变压器
局部放电
定位
最小二乘法
牛顿迭代法
复数域
transformer
partial discharge
location
the least squares method
Newton's method
complex field