期刊文献+

路基沉降灰色神经网络预测模型及其应用

GREY-ARTIFICIAL NEURAL NETWORK FORECASTING MODEL FOR SUBGRADE SETTLEMENT AND ITS APPLICATION
下载PDF
导出
摘要 针对路基沉降预测中信息的灰色性和数据的非线性性,提出用灰色神经网络预测路基沉降的新方法。以京沪高铁某段路基断面为例进行了预测研究,并与用GM(1,1)模型预测的结果进行了对比。研究结果表明:灰色神经网络预测比GM(1,1)模型预测误差小。 Aiming at the greyness of information and nonlinearity of data in forecasting for subgrade settlement,a new method to forecast subgrade settlement is proposed with grey-artificial neural network ( G-ANN). Take the section of Bei- jing-Shanghai High Speed Railway as an example ,the forecasting subgrade settlement is obtained with G-ANN and compared it with GM ( 1,1 ) model. The results show that the errors of grey-artificial neural network forecasting model is smaller than that of GM ( 1,1 ) forecasting model.
作者 刘作舟
出处 《建筑技术开发》 2011年第8期11-13,24,共4页 Building Technology Development
关键词 路基沉降 灰色神经网络 预测模型 GM(1 1)预测模型 BP神经网络预测模型 subgrade settlement grey-artificial neural network forecasting model GM ( 1,1 ) forecasting model BP neural net-work forecasting model
  • 相关文献

参考文献7

二级参考文献12

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部