摘要
观测数据中的野值会影响目标预测的精度。分析比较了几种常用的野值剔除准则,包括最常用的3σ准则、奈尔准则、格拉布斯准则和狄克逊准则,将其应用到目标预测的数据预处理中,并比较了各种方法的野值剔除能力和对目标预测精度的影响。仿真结果表明:野值剔除准则的引入可有效减少数据中野值的数量,提高目标预测的精度。其中,格拉布斯准则的实用效果尤为明显,且误剔除率也得到了较好的控制。
The outliers in the measured data will have a bad effect on the precision of target prediction.So how to eliminate outliers is an all-important problem.In this paper we first introduce several rules for eliminating outliers,and apply them to data preprocess in target prediction.By simulation on these rules,we demonstrate not only their capability of eliminating outliers but also how they impact the precision of target prediction.The results indicate that these rules can greatly improve the precision of target prediction,and the better the rule behaves,the more precise the prediction will be.This paper provides a good reference on how to choose appropriate rules for eliminating outliers while there is rare literature in this field up to now.
出处
《指挥控制与仿真》
2011年第4期98-102,共5页
Command Control & Simulation
关键词
野值剔除
目标预测
准则
outlier-eliminating
target prediction
rule