期刊文献+

一种复杂星座信号的盲均衡新方法 被引量:11

A Novel Blind Equalization Method of Complex Constellation Signals
下载PDF
导出
摘要 基于高阶统计量(HOS)盲均衡算法虽可适用于单入单出(SISO)系统,但HOS算法均依赖大数据量而无法满足高速信号传输的时变要求,该类算法对于高阶正交幅度调制(QAM)信号系统的盲均衡能力偏弱.该文在较小数据量的前提下,提出一种适用于SISO系统的高阶QAM信号盲均衡的新算法.算法运用支持向量回归框架,根据有序风险最小化原则,通过构造由恒模算法和星座匹配误差代价函数联合组成的新经验风险项和引入ε-不敏感损失函数的方法,构造出一个新的代价函数,从而将高阶QAM信号系统的盲均衡问题转化为求解无约束的优化问题.最后采用64-QAM信号进行仿真和分析,仿真结果发现无论从算法运算代价和对数据量的要求上均优越于现有HOS盲均衡算法. Blind equalization algorithms based on high order statistics(HOS) are suitable to single input single output(SISO) systems,but HOS algorithms need large amount of data and cannot meet the time-varying requirements in high-speed signal transmission systems and have not enough ability to detect blindly high-order quadrature amplitude modulation(QAM) signals.A novel cost function is constructed using support vector regression by structural risk minimization principle whose empiric risk is composed by the cost functions of constant modulus algorithm(CMA) and constellation match error(CME),and the epsilon-insensitive loss function is adopted,all of which transform the blind equalization problems of high-order QAM signals into solving an unconstrained optimization problem.Finally,64-QAM signal is used to simulate and analyze the performance of the novel algorithm and the results show that the burden of algorithm and the data requirements are superior to those existing HOS algorithms.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第7期1502-1507,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60772060)
关键词 无线通信 盲均衡 支持向量回归 正交幅度调制 星座匹配误差 wireless communication blind equalization SVR(support vector regression) QAM(quadrature amplitude modulation) CME(constellation match error)
  • 相关文献

参考文献5

二级参考文献27

  • 1D Schaflauber, G Matz, F Hlawatsch. Adaptive winer filter for time, varying channel estimation in wireless OFDM systems[A].IEEE Proc. Conf. On Acoustics, Speech and signal processing[C], Hongkong, April 6-10,2003.688 - 691. 被引量:1
  • 2X Hou, S Li, C Yin, G Yue. Two-Dimensional recursive least square adaptive channel estimation for OFDM systems [ A ]. IEEE 2005 international conference on wireless communications, networking and mobile computing [C], Dubai, United Arab Emirates, March 6 - 8,2005. 232 - 236. 被引量:1
  • 3E Karami, M Shiva. Decision-direceted recursive least squares MIMO channels tracking[J]. EURASIP J. Wireless Commun. Networking,2006, (2) :1 - 10. 被引量:1
  • 4Molisch A F. Wideband Wireless Digital Communications[M]. Englewood Cliffs, New Jersey: Prentice Hall PTR, 2001.1 - 24. 被引量:1
  • 5Proakis J G. Digital Communications[M]. 4th Ed. New York: Mc-Graw Hill, 2000.470 - 508. 被引量:1
  • 6Wei Zhang, Xuchu Dai. The hybrid subband blind equalizer for high-speed wideband structure based [ A]. 3rd IEEE Conf on Induslrial Electronics and Appfications [ C ]. Singapore:IEEE Press, 2008. 1588 - 1592. 被引量:1
  • 7McCloud M L,Etter D M. Subband adaptve filtering with time- varying nonuniform filter banks [ A ]. Proc IEEE. Int Conf Acoust, Speech, Signal Process [ C ]. Munich, Germany: IEEE Press, 1997.1953 - 1956. 被引量:1
  • 8Griesbach J D, Bose T, Etter D M. Non-uniform filterbank bandwidth allocation for system modeling subband adaptive filters[ A ]. Proc IEEE Int Conf Acoust, Speech, Signal Process [ C]. Phoenix, Arizona, USA: IEEE Press, 1999. 1473 - 1476. 被引量:1
  • 9Griesbach J D, Lightner M R, Etter D M. Constituem subband allocation for system modeling nonuniform subband adaptive filters[J]. IEEE Trans on Signal Processing, 2005,53 (2) : 539 - 549. 被引量:1
  • 10Cox R V. The design of uniformly and nonuniformly spaced speech coding[ J]. IEEE Trans on Acoust, Speech, Signal Process, 1986,34(5) : 1090 - 1096. 被引量:1

共引文献30

同被引文献115

  • 1文爱军,刘姣姣,李晓军.高速光传输系统中八进制差分相位幅度键控性能分析[J].中国激光,2009,36(3):614-619. 被引量:4
  • 2张曙霞,章松阳,蒋宇中.盲信道均衡的动量恒模算法[J].海军工程大学学报,2007,19(2):99-102. 被引量:3
  • 3许小东,戴旭初,徐佩霞.适合高阶QAM信号的加权多模盲均衡算法[J].电子与信息学报,2007,29(6):1352-1355. 被引量:28
  • 4K. Burse, R. Yadav, S. Shrivastava. Channel equalization using neural network: a review[J].IEEE Trans. Syst., Man. Cybern., Part C: Appl. Rev., 2010, 40(3): 352-357. 被引量:1
  • 5R. Pandey. Feedforward neural network for blind equalization with PSK signal[J].Neural Comput. & Appl., 2005, 14(4): 290-298. 被引量:1
  • 6Xiukai Ruan, Zhiyong Zhang. Blind nonlinear channel equalization using kernel processing[C].IEEE Image and Signal Processing, 2009. 4406-4411. 被引量:1
  • 7S. Rajbhandari, Z. Ghassemlooy, M. Angelova. Effective denoising and adaptive equalization of indoor optical wireless channel with artificial light using the discrete wavelet transform and artificial neural network[J].IEEE J. Lightwave Technol., 2009, 27(20): 4493-4500. 被引量:1
  • 8J. M. Zurada. Neural networks: binary monotonic and multiple-valued[C].IEEE Internatioal Symposium on Multiple-Valued Logic, 2000. 67-74. 被引量:1
  • 9I. Aizenberg. Complex-valued neurons with phase-dependent activation functions[C].International Conference on Artificial Intelligence and Soft Computing, 2010, 6114: 3-10. 被引量:1
  • 10Wei Zhou, J. M. Zurada. A class of discrete time recurrent neural networks with multi-valued neurons[J].Neurocomputing, 2009, 72(16-18): 3782-3788. 被引量:1

引证文献11

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部