期刊文献+

改进的分水岭算法在医学图像的分割

Improved Watershed Algorithm in Medical Image Segmentation
下载PDF
导出
摘要 分水岭算法由于其分割速度快、精确而受到很大的关注.但它存在过分割的问题。经过研究给出了改进算法,从两个方面来改进:(1)在算法执行前对输入图像进行滤波降噪处理;(2)在算法执行中结合动态合并准则直接对算法本身的形成的过分割区域进行抑制。实验结果表明,该方法能有效地处理过分割现象,是一种行之有效的方法。 Watershed segmentation algorithm becomes the focus because of its fast, accurate and attention, but there is over-segmentation problem. After the study shows the improved algorithm, to improve in two ways: (1)makes filtering noise reduction on the input image before the realizing; (2)in the algorithm with dynamic consolidation process of implementation guidelines for the formation of directly on the algorithm itself, to suppress the over-segmentation regions. The experimental result shows that the method can effectively deal with the phenomenon of over-seg- mentation, is an effective method.
作者 吕洁
出处 《现代计算机》 2011年第14期28-31,共4页 Modern Computer
关键词 医学图像分割 分水岭算法 数学形态学 动态合并 Medical Image Segmentation Watershed Algorithm Mathematical Morphology Dynamic Merge
  • 相关文献

参考文献5

  • 1Vincent L, Soille P. Watersheds in Digital Spaces: an Effi- cient Algorithm Based on Immersion Simulations [J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 1991, 13(6): 583-589. 被引量:1
  • 2赵于前,桂卫华,陈真诚,李凌云.复合型数学形态学医学图像边缘提取[J].计算机工程与应用,2005,41(33):5-6. 被引量:6
  • 3罗惠韬,章毓晋.一个图象分割评价实例及讨论[J].数据采集与处理,1997,12(1):18-22. 被引量:21
  • 4YANG XY, LIU J. Unsupervised Texture Segmentation with One-Step Means Shift and Noundary Markov Random Fields [J]. Pattern Recognition Letters, 2001, 22(10): 1073-1081. 被引量:1
  • 5Bieniek A, Moga A. An Efficient Watershed Algorithm Based on Connect Components[J]. Pattern Recognition, 2000, 21 (3): 907-916. 被引量:1

二级参考文献12

  • 1吴一全,朱兆达.图像处理中阈值选取方法30年(1962—1992)的进展(一)[J].数据采集与处理,1993,8(3):193-201. 被引量:145
  • 2吴一全,朱兆达.图像处理中阈值选取方法30年(1962—1992)的进展(二)[J].数据采集与处理,1993,8(4):268-282. 被引量:96
  • 3Chen T,Wu Q H,Rahmani-Torkaman R et al.A pseudo top-hat mathematical morphological approach to edge detection in dark regions[J].Pattern Recognition,2002 ;35 ( 1 ) : 199-210. 被引量:1
  • 4Rivest J.Morphological Operators on Complex Signals[J].Signal Processing, 2004 ; 84 (1):133-139. 被引量:1
  • 5Serra J.Image Analysis and Mathematical Morphology. New York: Academic Press, 1982. 被引量:1
  • 6Lee J S J,Haralick R M,Shapiro L G.Morphological Edge Detection[J].IEEE Transaction on Robotic Automation, 1987;3(4) : 142-156. 被引量:1
  • 7Maragos P.Differential Morphology and Image Processin[J].IEEE Trans Image Processing, 1996 ; 5 (6) : 922-937. 被引量:1
  • 8Ortiz F, Torres F.Vectorial Morphological Reconstruction for Brightness Elimination in Colour Images[J].Real-Time Imaging,2004; 10(6) :379-387. 被引量:1
  • 9Richard A P.A New Algorithm for Image Noise Reduction Using Mathematical morphology[J].IEEE Transaction on Image Processing, 1995 ;4(5):554-568. 被引量:1
  • 10Rajab M I,Woolfson M S ,Morgan S P.Application of region-based segmentation and neural network edge detection to skin lesions[J]. Computerized Medical Imaging and Graphics,2004;28(1-2):61-68. 被引量:1

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部