期刊文献+

基于改进HSMM的设备故障预测方法研究 被引量:3

Equipment fault prognosis based on improved HSMM
下载PDF
导出
摘要 针对传统隐半马尔科夫模型(HSMM)在故障诊断和预测应用中存在的不足,对传统HSMM做了以下改进:一是将状态持续时间概率分布和监测值概率分布连续化,并假定其服从威布尔分布;二是基于状态开始时间的识别,提出了状态剩余持续时间;三是提出了时变转移概率的概念,给出了各时刻转移概率的计算方法。确立了基于改进HSMM的故障诊断和预测的方法体系,给出了故障诊断判据和设备剩余寿命的计算式。案例研究表明方法是合理有效的。 To the four deficiencies of traditional HSMM applied in fault diagnosis and prognosis,the HSMM was improved as following.Firstly,the distribution of the state durations and detected value were continuous and parametric,the prior distribution was setted to Weibull distribution;secondly,the state residual durations was proposed based on the starting time of the state;thirdly,the time-varying transition probability was proposed and the formula of transition probability was given.The method of fault diagnosis and prognosis based on improved HSMM was setup,and the formulas of fault diagnosis criteria and Remaining Useful Life(RUL) of the equipment were presented.The rationality and the validity of this method was verified through an example.
作者 夏震宇 杨波
出处 《现代制造工程》 CSCD 北大核心 2011年第8期118-122,共5页 Modern Manufacturing Engineering
基金 国防十一五预研项目(1010503020303)
关键词 故障预测 故障诊断 隐半马尔科夫模型 状态持续时间 fault prognosis fault diagnosis Hidden Semi-Markov Model(HSMM) state duration
  • 相关文献

参考文献10

二级参考文献48

  • 1何正友,刘志刚,钱清泉.小波熵理论及其在电力系统中应用的可行性探讨[J].电网技术,2004,28(21):17-21. 被引量:55
  • 2RAMMOHAN R ,TAHA M R. Exploratory investigations for intelligent damage prognosis using hidden Markov models[ C]//Proc of IEEE International Conference on Systems, Man and Cybernetics. 2005: 1524-1529. 被引量:1
  • 3CAMCI F, CHINNAM R B. Hierarchical HMMs for autonomous diagnostics and prognostics [ C ]//Proc of International Joint Conference on Neural Networks. Vancouver: [ s. n. ] , 2006:2445-2452. 被引量:1
  • 4KWAN C, ZHANG X, XU R,et al. A novel approach to fault diagnostics and prognostics [ C ]//Proc of IEEE International Conference on Robotics & Automation. Taipei: [ s. n. ], 2003:604-609. 被引量:1
  • 5CHINNAM R B, BARUAH P. Autonomous diagnostics and prognostics through competitive learning driven HMM-based clustering[ C ]// Proc of International Joint Conference on Neural Networks. New York : [ s. n. ], 2003:604- 609. 被引量:1
  • 6RABINER L R. A tutorial on hidden Markov models and selected applications in speech recognition [ J ]. Proc of the IEEE, 1989,77 (2) :257-286. 被引量:1
  • 7OSTENDORF M, DIGALAKIS V V, KIMBALL O A. From HMM' s to segment models: a unified view of stochastic modeling for speech recognition[J]. IEEE Xrans on Speech and Audio .Processing, 1996,4(5 ) :360-3?8. 被引量:1
  • 8RUSSELL M, MOORE R. Explicit modeling of state occupancy in hidden Markov models for automatic speech recognition [ C ]//Proc of International Conference Acoustic Speech Signal Processing. 1955: 2376- 2379. 被引量:1
  • 9LEVINSON S. Continuously variable duration hidden Markov models for automatic speech recognition [ J ]. Computer Speech Language,1986,1:29-45. 被引量:1
  • 10GISH H, NG K, ROHLICEK J R. Secondary processing using speech segments for an HMM word spotting system [ C ]//Proc of International Conferencon Spoken Language. 1992 : 17-20. 被引量:1

共引文献255

同被引文献15

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部