期刊文献+

计算机化自适应诊断测验中原始题的属性标定 被引量:32

On-Line Item Attribute Identification in Cognitive Diagnostic Computerized Adaptive Testing
下载PDF
导出
摘要 认知诊断测验项目开发成本较高,要标定大量项目的属性相当费时费力,专家完成这一任务也比较困难。对于在计算机化自适应诊断测验中的项目属性的标定尚未见到报导。在已有的为诊断测验开发的小型题库基础上,本文在计算机化自适应认知诊断测验过程中,植入原始题,对项目属性标定的问题进行探讨,重点研究原始题属性标定的方法及其影响因素,除了MMLE方法和MLE方法外,还建立了一种新的可用于所有非补偿认知诊断模型的属性标定的方法——交差方法。MonteCarlo模拟结果显示,MMLE方法较MLE方法好;在知识状态估计精度较高时,自适应植入原始题较随机植入原始题有一定的优势;随着知识状态估计精度提高和原始题作答次数增加,交差方法与MLE方法基本相当,只是在发散型和无结构型表现欠佳,但是交差方法不需要预先设定项目参数值。 Cognitive Diagnostic Assessment (CDA) combining psychometrics and cognitive science has received increased attention recently, but it is still in its infancy (Leighton and Gierl, 2007). The CDA based on the incidence Q-matrix (Tatsuoka, 1990) is quite different from the traditional Item Response Theory. The entries in each column of the incidence Q-matrix indicate which skills and knowledge are involved in the solution of each item. So the Q-matrix plays an important role in establishing the relation between the latent knowledge states and the ideal response patterns so as to provide information about students' cognitive strengths and weaknesses. On the other hand, CDA requires the specifications which latent attributes are measured by the test items and how these characteristics are related to one another. Leighton, Gierl and Hunka (2004) indicated the logic of Attribute Hierarchy Method (AHM) as following. Firstly, the hierarchy of attributes must be specified through protocol techniques before test item construction. Secondly, test items are developed by specialists according to the attribute hierarchy and finally, the hierarchy of attributes and item attributes are necessary to be validated. In real situations, whether the items have or have not been identified attributes before its construction, it will cost a lot of money, require more efforts to identify attributes through specialists according the above described procedure and yet can't completely assume the correctness due to the subjectivity. As a result, invalid inferences about the student performance will be made if the attributes of some items are specified incorrectly. Chang (2010) pointed out that the on-line calibration for regular computerized adaptive testing may be one of the most effective processes, Although the great significance of Q-matrix in CDA has been widely recognized, few, if any, on-line item attribute identification has been found in the literature. So this study discussed how to implement the on-line i
出处 《心理学报》 CSSCI CSCD 北大核心 2011年第8期964-976,共13页 Acta Psychologica Sinica
基金 国家自然科学基金项目(30860084 60263005) 教育部人文社科项目(09YJCXLX012 10YJCXLX049) 全国教育考试"十一五"科研规划项目 (2009JKS2009) 江西省教育厅青年科学基金项目(GJJ10238) 高等学校博士学科点专项科研基金联合资助课题(20103604110002) 江西省研究生创新专项资金项目(YC10A039) 江西师范大学研究生创新基金项目(YJS2010040)
关键词 计算机化自适应诊断测验 在线属性向量标定 MMLE DINA模型 cognitive diagnostic computerized adaptive testing on-line item attribute identification MMLE DINA
  • 相关文献

参考文献42

  • 1Ban, J. C., Hanson, B. A., Wang, T. Y., Yi, Q., & Harris, D. J. (2001). A comparative study of on-line pretest item: calibration/scaling methods in computerized adaptive testing. Journal of Educational Measurement, 38, 191-212. 被引量:1
  • 2Ban, J. C., Hanson, B. A., Yi, Q., & Harris, D. J. (2002). Data sparseness and on-line pretest item calibration-scaling methods in CAT. Journal of Educational Measurement, 39, 207-218. 被引量:1
  • 3Chang, Y. C. I., & Lu, H. Y. (2010). Online calibration via variable length computerized adaptive testing. Psychometrika, 75, 140-157. 被引量:1
  • 4Chen, P., Xin, T., Wang, C., & Chang, H. H. (2010, July). A comparative study on on-line calibration methods in cognitive diagnostic computerized adaptive testing. Paper presented at the 75th Meeting of the Psychometric Society, Athens, Georgia. 被引量:1
  • 5Cheng, Y. (2009). When cognitive diagnosis meets computerized adaptive testing: CD-CAT. Psychometrika, 74, 619-632. 被引量:1
  • 6Cheng~ Y., & Chang, H. H. (2007). The modified maximum global discrimination index method for cognitive diagnostic computerized adaptive testing. In D. Weiss (Ed.), Proceedings of the 2007 GMAC Computerized Adaptive Testing Conference Retrieved August 1, 2010, from http://www.psych. umn.edu/psylabs/catcentral/pdf%20files/cat07cheng.pdf. 被引量:1
  • 7Collins, J. A., Greer, J. E., & Huang, S. X. (1993). Adaptive assessment using granularity hierarchies and bayesian nets. In C. Frasson, G. Gauthier, & A. Lcgold (Eds.). Intelligent Tutoring Systems: Proceedings of the 3rd International Conference (pp.569-577). London, UK: Springer-Vcrlag. 被引量:1
  • 8DeCarlo, L. T. (2011). On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes,and the Q-matrix. Applied Psychological Measurement, 35, 8-24. 被引量:1
  • 9de la Torre, J. (2008). An empirically based method of Q-Matrix validation for the DINA model: development and applications. Journal of Educational Measurement, 45, 343-362. 被引量:1
  • 10DiBello, L. V., & Stout, W. (2007). Guest editors' introduction and overview: IRT-Based cognitive diagnostic models and related methods. Journal of Educational Measurement, 44, 285-291. 被引量:1

二级参考文献61

共引文献149

同被引文献446

引证文献32

二级引证文献189

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部