期刊文献+

无偏置ν-SVM分类优化问题研究

Study on ν-svm for Classification Optimization Problem without Bias
下载PDF
导出
摘要 在高维空间中,分类超平面倾向于通过原点,即不需要偏置(b)。为了研究在ν-SVM分类问题中是否需要b,该文提出了无(b)的ν-SVM的对偶优化问题并给出了其优化问题求解方法。该方法通过有效集策略将对偶优化问题转化为等式约束子优化问题,然后通过拉格朗日乘子法将子优化问题转化为线程方程组来求解。实验表明偏置(b)的存在会降低ν-SVM的泛化性能,ν-SVM只能得到无(b)ν-SVM的次优解。 In the high-dimensional space,the classification hyperplane tends to pass through the origin and bias(b) is not need.To study whether ν-svm for classification needs(b),dual optimization formulation of without(b) is proposed and the corresponding method of solving the optimization formulation is presented.The dual optimization formulation is transformed into equality constraint sub-optimization formulation by the active set strategy in this method,then the sub-optimization formulation is transformed into the linear equation by lagrange multiplier method.The experimental results show that the existence of(b) would reduce the generalization ability of ν-svm and ν-svm can only obtain the sub-optimal solution of ν-svm without b.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第8期1998-2002,共5页 Journal of Electronics & Information Technology
基金 国家863计划项目(2008AA01Z136)资助课题
关键词 V-支持向量机 偏置 泛化性能 有效集 ν-Support Vector Machine(SVM) Bias Generalization ability Active set
  • 相关文献

参考文献2

二级参考文献12

  • 1Cortes C and Vapnik V.Support vector networks.Machine Learning,1995,20(3):273-297. 被引量:1
  • 2Song Q,Hu W J,and Xie W F.Roust support vector machine with bullet hole image classification.IEEE Trans.Syst.,Man,Cybern.,2002,32(11):440-448. 被引量:1
  • 3Dong J X,Krzyzak A,and Suen C Y.Fast SVM training algorithm with decomposition on very large data sets.IEEE Trans.on Pattern Anal.and Machine Intel.,2005,27(4):603-618. 被引量:1
  • 4Scholkopf B,Smola A J,and Williamson R C,et al..New support vector algorithms.Neural Computation,2000,12(5):1207-1245. 被引量:1
  • 5Chew H G,Bogner R E,and Lim C C.Dual-v support vector machine with error rate and training size Biasing.ICASSP,Salt Lake City,Utah,USA,2001:1269-1272. 被引量:1
  • 6Wu X Y and Srihari R.New v-support vector machines and their sequential minimal optimization.Proc.of the 20th Int.Conf.on Machine Learning,Washington D.C.USA,2003:824-831. 被引量:1
  • 7Platt J.Fast Training of Support Vector Machines Using Sequential Minimal Optimization.Advances in Kernel Methods-Support Vector Learning,MIT Press,1998:185-208. 被引量:1
  • 8Chung C C and Jen L C.LIBSVM:A library for support vector machine.2005.http://www.csie.ntu.tw/~cjlin/libsvm. 被引量:1
  • 9ZHANG Yu-Nong,CHEN Zeng-Hai,CHEN Ke.Convergence Properties Analysis of Gradient Neural Network for Solving Online Linear Equations[J].自动化学报,2009,35(8):1136-1139. 被引量:2
  • 10YANG Wu-Yi,LIANG Wei,XIN Le,ZHANG Shu-Wu.Subspace Semi-supervised Fisher Discriminant Analysis[J].自动化学报,2009,35(12):1513-1519. 被引量:5

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部