期刊文献+

偏振方向及结构间耦合作用对空心方形银纳米结构表面等离子体共振的影响 被引量:2

Effects of incident polarization and electric field coupling on the surface plasmon properties of square hollow Ag nanostructures
原文传递
导出
摘要 空心方形纳米结构能够激发更大面积的增强电场,故其可以作为衬底用于表面增强拉曼散射.应用离散偶极子近似算法研究了空心方形银纳米结构的消光光谱及其近场电场分布与入射光偏振方向之间的关系.研究表明,空心方形银纳米结构的表面等离子体共振峰不随入射光偏振方向的改变而移动,但是其表面增强电场分布却强烈地依赖于入射光的偏振方向.另外,还讨论了空心方形银纳米结构间的耦合作用对其表面等离子体共振模式的影响.结果发现,可以通过调节结构间的距离来改变结构间的耦合作用,同时改变了表面等离子体共振峰的位置.这些结果将为理解闭合纳米结构表面等离子体共振方面的光学性质及闭合纳米结构间的耦合作用提供帮助,从而指导闭合纳米结构阵列的制备,以达到特定的表面等离子体共振方面应用的目的. Square hollow nanostructure can induce a large-area enhanced electric field at the main plasmon peak.Therefore,it can be used as a substrate for the surface enhanced Raman scattering.The effects of the incident polarization on the extinction spectrum and the electric field distribution of the square Ag nanostructure are studied by the discrete dipole approximation method.The results show that the plasmon peaks do not shift with the variation of incident polarization.However,the electric field distribution is strongly dependent on the direction of incident polarization.Additionally,the effect of the electric field coupling between adjacent square Ag nanostructures on the plasmon mode is also studied.It is found that the plasmon resonance can be tuned by varying the separation between adjacent squares.These results could be used to guide the preparation of such closed nanostructures for specific plasmonic applications.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第8期685-692,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11004160 10974157) 重庆市自然科学基金(批准号:CSTC2010BB4005) 中央高等学校基本科研基金(批准号:XDJK2009C078 XDJK2009A001) 国家大学生创新性实验计划(批准号:101063523)资助的课题~~
关键词 空心方形银纳米结构 表面等离子体 偏振 电场耦合 square hollow Ag nanostructure surface plasmon polarization electric field coupling
  • 相关文献

参考文献23

  • 1Hao P, Wu Y H, Zhang P 2010 Acta Phys. Sin. 59 6532 (inChinese ). 被引量:1
  • 2Wang K, Yang G, Long H, Li Y H, Dai N L, Lu P Y 2008Acta Phys. Sin. 57 3862 (in Chinese). 被引量:1
  • 3Wu D J, Liu X J 2008 Acta Phys. Sin. 57 5138 (in Chinese). 被引量:1
  • 4Moskovits M 1985 Rev. Mod. Phys. 57 783. 被引量:1
  • 5Campion A, Kambhampati P 1998 Chem. Soc. Rev. 27 241. 被引量:1
  • 6Tian Z Q, Ren B, Wu D Y2002 J. Phys. Chem. B 106 9463. 被引量:1
  • 7Vo-Dinh T 1998 Trac. Trends Anal. Chem. 17 557. 被引量:1
  • 8Liu M M, Zhang G P, Zou M 2006 Acta Phys. Sin. 55 4608 (inChinese). 被引量:1
  • 9Nie S M, Emory S R 1997 Science 275 1102. 被引量:1
  • 10Kelly K L, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668. 被引量:1

同被引文献33

  • 1程敏熙,何振江,黄佐华.偏振光斯托克斯参量的测量和应用[J].红外与激光工程,2006,35(z2):109-115. 被引量:11
  • 2何华辉,苏钧,冯则坤,陈亚波,龚学文.新型磁光隔离器的研制与分析[J].磁性材料及器件,1997,28(1):1-7. 被引量:4
  • 3Maier S A. Plasmonics : fundamentals and applications [ M ], Ber- lin : Springer-verlag, 2007. 被引量:1
  • 4Hutter E and Fendler J H. Exploitation of localized surface Plas- mon resonanee [ J ]. Advanced Materials, 2004,16 ( 19 ) : 685 - 1706. 被引量:1
  • 5Coppens Z J, Li W, etal. Probing and Controlling Photothermal Heat Generation in Plasmonic Nanostructures [J]. Nano Lett, 2013 ( 13 ) : 1023 - 1028. 被引量:1
  • 6Dickerson E B, Droaden E C, Huang X, etal. Gold nanorod as- sisted near-infrared plasmonie photothermal therapy (PPTT) of squamous cell carcinoma in mice [J]. Cancer Letters. 2008, 269 (1) :57 -66. 被引量:1
  • 7Boyer D, Tamarat P, Maali A, etal. Photothermal imaging of nanometer-sized metal particles among scatterers [ J ]. Science, 2002,297 (5584) :1160 - 1163. 被引量:1
  • 8Donner J S, Baffou G, Me Closkey D. Quidant R. Plasmon-assis- ted optofluidies [ J ]. ACS nano,2011,5 (7) :5457 - 5462. 被引量:1
  • 9Lal S, Clare S, E. Halas N. J. Nanoshell-enabled photothermal cancer therapy: impending clinical impact [ J ]. Accounts of Chem- ical Research,2008,41 ( 12 ) : 1842 - 1851. 被引量:1
  • 10Loo C, Lin A, Hirsch L, et al. Nanoshell-Enabled Photonics- Based Imaging and Therapy of Cancer [ J]. Technology in Cancer Research & Treatment,2004,3( 1 ) :33 -40. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部