摘要
Based on flexible pneumatic actuator(FPA),bending joint and side-sway joint,a new kind of pneumatic dexterous robot finger was developed.The finger is equipped with one five-component force sensor and four contactless magnetic rotary encoders.Mechanical parts and FPAs are integrated,which reduces the overall size of the finger.Driven by FPA directly,the joint output torque is more accurate and the friction and vibration can be effectively reduced.An improved adaptive genetic algorithm(IAGA) was adopted to solve the inverse kinematics problem of the redundant finger.The statics of the finger was analyzed and the relation between fingertip force and joint torque was built.Finally,the finger force/position control principle was introduced.Tracking experiments of fingertip force/position were carried out.The experimental results show that the fingertip position tracking error is within ±1 mm and the fingertip force tracking error is within ±0.4 N.It is also concluded from the theoretical and experimental results that the finger can be controlled and it has a good application prospect.
Based on flexible pneumatic actuator (FPA), bending joint and side-sway joint, a new kind of pneumatic dexterous robot finger was developed. The finger is equipped with one five-component force sensor and four contactless magnetic rotary encoders. Mechanical parts and FPAs are integrated, which reduces the overall size of the finger. Driven by FPA directly, the joint output torque is more accurate and the friction and vibration can be effectively reduced. An improved adaptive genetic algorithm (IAGA) was adopted to solve the inverse kinematics problem of the redundant finger. The statics of the finger was analyzed and the relation between fingertip force and joint torque was built. Finally, the finger force/position control principle was introduced. Tracking experiments of fingertip force/position were carried out. The experimental results show that the fingertip position tracking error is within ±1 mm and the fingertip force tracking error is within ±0.4 N. It is also concluded from the theoretical and experimental results that the finger can be controlled and it has a good application prospect.
基金
Project(2009AA04Z209) supported by the National High Technology Research and Development Program of China
Project(R1090674) supported by the Natural Science Foundation of Zhejiang Province,China
Project(51075363) supported by the National Natural Science Foundation of China