期刊文献+

基于级联结构的航空发动机振动信号盲分离

Blind Separation of Aviation Engine Vibration Signal Based on Cascaded Structure
下载PDF
导出
摘要 级联型的盲抽取紧缩方法具有算法快速、冗余性小、单元结构简单和易于实现等优点,在盲信号处理领域有着广泛的应用。针对该结构在航空发动机振动信号盲分离中的应用进行了研究,首先介绍了这种级联结构的可行性和优越性以及抽取紧缩单元的优化算法,然后对某型航空发动机实测的故障振动信号利用级联盲抽取结构进行振源分离,并通过对分离出的振源信号进行功率谱分析诊断出导致发动机振动过大产生故障的原因。仿真结果验证了该方法的有效性,可以应用于航空发动机振动信号盲分离领域。 The cascade type blind separation method has the advantages such as fast algorithm,little redundancy,simple unit-structure and easy to realize,so it is widely applied in blind signal processing field.The use of this structure in aviation engine vibration signal blind separation was researched.At first,the feasibility and superiority of the cascade extraction structure,and the optimization algorithm of extraction and deflation units were introduced.After,a real aviation engine vibration signal was separated by using the cascade type blind extraction structure,then power spectrum analysis for the separated vibration signal was done,at last the cause of excessive vibration fault was diagnosed.Simulation results demonstrate the effectiveness of the proposed method,and it can be used in aviation engine vibration signal blind separation.
作者 郝鹏 马建仓
出处 《测控技术》 CSCD 北大核心 2011年第7期83-86,共4页 Measurement & Control Technology
基金 国家自然科学基金资助项目(60672184)
关键词 抽取紧缩 发动机振动信号 盲分离 故障诊断 extraction and deflation engine vibration signal blind separation fault diagnosis
  • 相关文献

参考文献9

二级参考文献13

  • 1廖伯瑜.机械故障诊断基础[M].北京:冶金工业出版社,2002.. 被引量:11
  • 2Comon P.Independent component analysis,a new conception[J].Signal Processing,1994,36:287~314 被引量:1
  • 3Bell A,Sejnowski T.Fast blind separation based on information theory[A].In:Proc.1995 Int.Symp.on Nonlinear Theory and Applications (NOLTA-95)[C],Las Vegas,USA,1995 被引量:1
  • 4Cardoso J F,Paris T.Eigen-structure of the fourth-order cumulant tensor with application to the blind source separation problem[A].International Conference on Acoustics,Speech,and Signal Processing[C],1990,(5):2655~2658 被引量:1
  • 5Gaeta M,Lacoume J L.Sources separation without a priorknowledge:the maximum likelihood solution,5[A].European Signal Processing Conference[C],Barcelona Spain,1990 被引量:1
  • 6Karhunen J,Joutsensalo J.Representation and separation of signals using nonlinear PCA type learning[J].Neural Networks,1994,7:113~127 被引量:1
  • 7Hyvarinen P,et al.Independent Component Analysis[M].New York:2001 被引量:1
  • 8Aapo Hyvarinenn.Independent component analysis:algorithms and applications[J].Neural Networks,2000,(13) 被引量:1
  • 9Douglas S C,Cichocki A,Amari S,Bias removal technique for blind source separation with noisy measurements[J].Electronics Letters,1998:1379-1380. 被引量:1
  • 10Girolami M.Symmetric Adaptive Maximum Likelihood Estimation for Noise Cancellation and Signal Separation[J].Electronic Letters,1997,33(17):1437-1438. 被引量:1

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部