摘要
Nepal lies on the southern slope of Himalaya in Asia. In a width ranging between 150 and 250 km, the altitude varies greatly from about 100 m at its southern border to a maximum of 8848 min the northern part. Like the variation in altitude, climatic condition varies quite a lot. Long-term monthly mean erythemal UV daily dose values for Nepal are evaluated using Total Ozone Mapping Spectrometer (TOMS) estimation from the time of its overpass between 1996 and 2003. The results are presented as summer and winter maps of mean UV levels in each satellite grid. The mean winter erythemal UV daily dose ranges between 2.1 and 3.6 kJ m-2 whereas summer values are found to lie between 4.6 and 9.7 kJ m-2. The altitude variation increases the UV levels by about 0.2 kJ km-1 in winter months, and 0.9 kJ km-1 in summer. A multiyear monthly average erythemal daily dose in most of the areas shows that the summer value is about three times higher than that in winter. Although year-to-year variation is not pronounced in high- and mid-elevation regions, UV levels seemed to decrease from 1997 to 2002 in the southern part of the country in the low elevation region by about 5.35%. Due to the combined effects of the altitude, low ozone concentration in the troposphere, and thin air, surface UV radiation at higher altitudes is found to be higher than in the surrounding regions.
Nepal lies on the southern slope of Himalaya in Asia. In a width ranging between 150 and 250 km, the altitude varies greatly from about 100 m at its southern border to a maximum of 8848 min the northern part. Like the variation in altitude, climatic condition varies quite a lot. Long-term monthly mean erythemal UV daily dose values for Nepal are evaluated using Total Ozone Mapping Spectrometer (TOMS) estimation from the time of its overpass between 1996 and 2003. The results are presented as summer and winter maps of mean UV levels in each satellite grid. The mean winter erythemal UV daily dose ranges between 2.1 and 3.6 kJ m-2 whereas summer values are found to lie between 4.6 and 9.7 kJ m-2. The altitude variation increases the UV levels by about 0.2 kJ km-1 in winter months, and 0.9 kJ km-1 in summer. A multiyear monthly average erythemal daily dose in most of the areas shows that the summer value is about three times higher than that in winter. Although year-to-year variation is not pronounced in high- and mid-elevation regions, UV levels seemed to decrease from 1997 to 2002 in the southern part of the country in the low elevation region by about 5.35%. Due to the combined effects of the altitude, low ozone concentration in the troposphere, and thin air, surface UV radiation at higher altitudes is found to be higher than in the surrounding regions.
基金
supported by the Quota Program for developing countries at NTNU