期刊文献+

途径节点不确定的MTSP路轨规划模型及其遗传算法研究 被引量:1

MTSP-based Research on Path Scheduling Model and Its Stochastic GA with Uncertain Node Set
下载PDF
导出
摘要 一般的路径规划问题假设道路网络是确定的,并且采用实时优化的方法建立优化路径,这种方法的结果不具有实用性。在高速发展的中国,道路网络实际上变化很快,而路网的电子地图往往无法实时更新;即使实时规划的路径本身是可行的,各配送点也会因为对新道路缺少经验而导致实际行驶时间大大超出预计,尤其对多个司机的情况。根据途径节点,考虑不同途径节点的不确定性,阶段性地产生稳定线路,是可行的方案。能够在路径成本和时间取得综合的平衡,多配送点工作量的相对均衡。利用MTSP问题的解决,提出了具有不确定途径节点的多目标路径规划模型,并且设计了随机遗传算法。仿真研究表明,该模型是有效的,该算法具有良好的求解性能。该成果有望集成在配送或运输决策支持系统中,为阶段性路径规划提供支持。 The general path planning assume that the road network is established,and the establishment of real-time optimization of path optimization method,the results of this method is not practical.The rapid development of China's road network has changed rapidly,and road network are often not real-time electronic map update;even if the real-time path planning in itself is feasible,the driver will be because lack of experience on the new road which led to much actual driving time than expected.Node under way to consider the uncertainty of nodes with different channels,the production phase stability line,is a feasible,cost and time to time in the path to achieve an integrated balance.The nodes with uncertain path planning model approach,and the design of a random evolutionary algorithm.Simulation studies show that the model is valid;the algorithm has good performance to solve.The results are expected to integrate in the distribution or transportation decision support system to provide support for the path planning phase.
机构地区 上海海事大学
出处 《科学技术与工程》 2011年第21期4963-4968,共6页 Science Technology and Engineering
基金 上海市科学技术委员会资助项目(09DZ2250400) 上海市教委重点学科建设项目资助(J50604) 上海市教委科研创新项目(10YZ115) 上海市自然科学基金资助项目(10ZR1413200) 上海市科委地方院校能力建设项目资助(08170511300) 上海市科委国际合作项目(09530708200)资助
关键词 随机遗传算法 MTSP 路径规划 不确定性 random GA MTS path planning uncertainty
  • 相关文献

参考文献20

  • 1Hopfield H J, Tank D. "Neural" computation of decisions in optimizalion problems. Biolog Cybemet, 1985 ; (52) : 141-152. 被引量:1
  • 2Aihara T, Takableand M. Toyoda. Chaotie-neural-networks, Physies Letters A,1990;4(6,7) :333-340. 被引量:1
  • 3Chen Luonan,Aihara K. Chaotic simulated annealing by a neural network model with transient chaos. Neural Networks, 1995;8 (6) :915-930. 被引量:1
  • 4Greenwood G W, Gupta A. Scheduling task in muhiprocessor system using evolutionary strategies. The lntemational Joint Conference on NeuralNetworks, Nagoya, Japan, 1993:2216-2242. 被引量:1
  • 5Kirkpatrick S, Gelatt Jr C D, Veechi M P. Optimization by simulated annealing. Science, 1983 ;220:671-680. 被引量:1
  • 6Holland J H. Adption in natural and artifieial system. The University of Miehigan Press, 1975 : 150-195. 被引量:1
  • 7Aihara K, Takableand T, Oyoda M T. Chaotie neural networks. Physies Letterk ,1990 :144(6,7 ) :333 - 340. 被引量:1
  • 8Aiyer S V B, Niranjan M, Fallside F. Atheoretical investigation into the performance of the hopfield model. IEEE Transactions on Neural Networks, 1990;1(2) :204-215. 被引量:1
  • 9Colomi A, Dorigo M. Heuristics from nature for hard combinatorial optimizations problems. Interactional Trans Operational Research, 1963 ; (1) :1-21. 被引量:1
  • 10Penev K, Littlefair G. Free seareh-a comparative analysis. Information Sciences ,2005 : 173-193. 被引量:1

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部