期刊文献+

Future impacts of climate change on forest fire danger in northeastern China 被引量:15

Future impacts of climate change on forest fire danger in northeastern China
下载PDF
导出
摘要 Climate warming has a rapid and far-reaching impact on forest fire management in the boreal forests of China. Regional climate model outputs and the Canadian Forest Fire Weather Index (FWI) Sys- tem were used to analyze changes to fire danger and the fire season for future periods under IPCC Special Report on Emission Scenarios (SRES) A2 and B2, and the data will guide future fire management planning. We used regional climate in China (1961 1990) as our validation data, and the period (1991–2100) was modeled under SRES A2 and B2 through the weather simulated by the regional climate model system (PRECIS). Meteorological data and fire danger were interpolated to 1 km 2 by using ANUSPLIN software. The average FWI value for future spring fire sea- sons under Scenarios A2 and B2 shows an increase over most of the region. Compared with the baseline, FWI averages of spring fire season will increase by 0.40, 0.26 and 1.32 under Scenario A2, and increase by 0.60, 1.54 and 2.56 under Scenario B2 in 2020s, 2050s and 2080s, respectively. FWI averages of autumn fire season also show an increase over most of the region. FWI values increase more for Scenario B2 than for Scenario A2 in the same periods, particularly during the 2050s and 2080s. Average future FWI values will increase under both scenarios for autumn fire season. The potential burned areas are expected to increase by 10% and 18% in spring for 2080s under Scenario A2 and B2, respectively. Fire season will be prolonged by 21 and 26 days under ScenariosA2 and B2 in 2080s respectively. Climate warming has a rapid and far-reaching impact on forest fire management in the boreal forests of China. Regional climate model outputs and the Canadian Forest Fire Weather Index (FWI) Sys- tem were used to analyze changes to fire danger and the fire season for future periods under IPCC Special Report on Emission Scenarios (SRES) A2 and B2, and the data will guide future fire management planning. We used regional climate in China (1961 1990) as our validation data, and the period (1991–2100) was modeled under SRES A2 and B2 through the weather simulated by the regional climate model system (PRECIS). Meteorological data and fire danger were interpolated to 1 km 2 by using ANUSPLIN software. The average FWI value for future spring fire sea- sons under Scenarios A2 and B2 shows an increase over most of the region. Compared with the baseline, FWI averages of spring fire season will increase by 0.40, 0.26 and 1.32 under Scenario A2, and increase by 0.60, 1.54 and 2.56 under Scenario B2 in 2020s, 2050s and 2080s, respectively. FWI averages of autumn fire season also show an increase over most of the region. FWI values increase more for Scenario B2 than for Scenario A2 in the same periods, particularly during the 2050s and 2080s. Average future FWI values will increase under both scenarios for autumn fire season. The potential burned areas are expected to increase by 10% and 18% in spring for 2080s under Scenario A2 and B2, respectively. Fire season will be prolonged by 21 and 26 days under ScenariosA2 and B2 in 2080s respectively.
出处 《Journal of Forestry Research》 SCIE CAS CSCD 2011年第3期437-446,共10页 林业研究(英文版)
基金 support by National Science and Technology Support Plan(2007BAC03A02) National Natural Science Foundation of China(30671695)
关键词 climate change fire season forest fire danger northeastern China climate change fire season forest fire danger northeastern China
  • 相关文献

参考文献6

二级参考文献127

共引文献459

同被引文献121

引证文献15

二级引证文献138

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部