期刊文献+

结合分水岭机制的有监督图像背景分割算法 被引量:1

Supervised background segmentation algorithm combined with watershed mechanism
下载PDF
导出
摘要 传统的分水岭分割算法属于无监督的图像分割算法,分割获得的子区域往往不具备现实的语义信息。在分水岭分割的基础上,利用子区域像素值的高斯统计性质,提出了一种有监督的图像背景学习方法。该算法能够通过对少量人工标注的图像样本的学习,获得刻画背景子区域规律的统计模型。在此基础上对新图片中隶属于背景的子区域进行判断和合并,从而达到区分目标与背景的目的。实验验证了算法的有效性。 The traditional watershed segmentation algorithm is a kind of unsupervised segmentation algorithms,which produces sub-regions without semantic representation.A supervised image segmentation algorithm is proposed,which is based on Gaussian statistical property of sub-regions obtained by watershed segmentation.The proposed algorithm can learn the statistical model of background with a few labeled images,and then correctly separates the objects from background by merging the sub-regions which are judged members of the background.Experiments verify the validity of the proposed method.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第21期205-209,共5页 Computer Engineering and Applications
基金 国家自然科学基金No.61070033 广东省自然科学基金重点项目(No.9251009001000005) 广东高校优秀青年创新人才培育项目(No.LYM09068)~~
关键词 背景学习 有监督 分割 分水岭算法 background learning supervised segmentation watershed algorithm
  • 相关文献

参考文献13

  • 1Vailaya A, Figueiredo M A T, Jain A K, et al.Image classification for content-based indexing[J].IEEE Transactions on Image Process-ing,2001,10( 1 ) : 117-130. 被引量:1
  • 2黎曦..基于感兴趣区域的图像分类技术研究[D].国防科学技术大学,2006:
  • 3Pala N R, Pala S K.A review on image segmentation teeh-niques[J].Pattem Recognition, 1993,26(9) : 1277-1294. 被引量:1
  • 4宋焕生,刘春阳,吴成柯,梁德群.多尺度脊边缘及其在图像目标分割中的应用[J].自动化学报,1999,25(6):844-847. 被引量:7
  • 5Barker S A,Rayner P J W.Unsuperviscd image segmentation us-ing Markov random field models[J].Pattem Recognition,2000,33 (4) : 587-602. 被引量:1
  • 6张丽莉..基于分水岭分割的图像检索系统研究与实现[D].西安电子科技大学,2008:
  • 7Gonzalez R C.数字图像处理[M].阮秋琦,阮宇智,译.北京:电子工业出版社,2005. 被引量:24
  • 8Luc V, SoiUe P.Watersheds in digital spaces: an efficient algorithm based on immersion simulations[J].lEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13 (6) : 583-598. 被引量:1
  • 9Bleau A,Lcon L J.Watershed-bascd segmentation and region mcrg-ing[J].Computer Vision and Image Understanding,2000,77(3): 317-370. 被引量:1
  • 10李敏花,王春恒,肖柏华,柏猛.一种基于条件随机场的复杂背景图像文本抽取方法[J].模式识别与人工智能,2009,22(6):827-832. 被引量:5

二级参考文献20

  • 1宋焕生,梁德群,刘春阳.一种新的小波变换域选通滤波器[J].信号处理,1996,12(4):311-315. 被引量:7
  • 2Otsu N. A Threshold Selection Method from Gray-Level Histogram. IEEE Trans on System, Man and Cybernetics, 1977, 9( 1 ) : 62 - 66. 被引量:1
  • 3Niblack W. Introduction to Digital Image Processing. Upper Saddle River, USA: Prentice Hall, 1986:115-116. 被引量:1
  • 4Sato T, Kanade T, Hughes E K, et al. Video OCR for Digital News Archive // Proc of the IEEE Workshop on Content-Based Access of Image and Video Database. Bombay, India, 1998:52 -60. 被引量:1
  • 5Song Yah, Liu Anan, Pang Lin, et al. A Novel Image Text Extraction Method Based on K-means Clustering//Proc of the 7th IEEE/ ACIS International Conference on Computer and Information Science. Portland, USA, 2008:185-190. 被引量:1
  • 6Gllavata J, Ewerth R, Stefi T, et al. Unsupervised Text Segmentation Using Color and Wavelet Features// Proc of the 3rd International Conference on Image and Video Retrieval. Dublin, Ireland, 2004:216-224. 被引量:1
  • 7Gao Jiang, Yang Jie. An Adaptive Algorithm for Text Detection from Natural Scenes//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Hawaii, USA, 2001, Ⅱ : 84 - 89. 被引量:1
  • 8Chen Datong, Odobez J M, Bourlard H. Text Segmentation and Recognition in Complex Background Based on Markov Random Field //Proc of the 16th International Conference on Pattern Recognition. Quebec, Canada, 2002, Ⅳ : 227 - 230. 被引量:1
  • 9Jung K, Kim K I, Jain K. Text Information Extraction in Images and Video : A Survey. Pattern Recognition, 2004, 37 (5) : 977 - 997. 被引量:1
  • 10Lafferty J D, McCallum A, Pereira F C N. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data//Proc of the 18th International Conference on Machine Learning. Williamstown, USA, 2001:282-289. 被引量:1

共引文献33

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部