期刊文献+

基于层次聚类的主动学习方法——HC_AL 被引量:2

HC_AL:New active learning method based on hierarchical clustering
下载PDF
导出
摘要 针对传统主动学习(AL)方法对大规模的无标记样本分类收敛速度过慢的问题,提出了基于层次聚类(HC)的主动学习训练算法——HC_AL方法。通过对大规模的未标记数据进行层次聚类,并对每个层次上的类中心打标记来代替该层次上的类标记,然后将该层次上具有错误标记的类中心加入训练集。在数据集上的实验取得了较好的泛化能力和较快的收敛速度。实验结果表明通过采用分层细化、逐步求精的方法,可使主动学习的收敛速度大大提高,同时获得较为满意的学习能力。 Concerning the slow convergence speed of unlabeled samples classification while using the traditional Active Learning(AL) method to deal with the large-scale data,a Hierarchical Clustering Active Learning(HC_AL) algorithm was proposed.During operation in the algorithm,the majority of the unlabeled data were clustered hierarchically and the center of each cluster was labeled to replace the category label of this hierarchy.Then the wrong labeled data were added into the training data sets.The experimental results at the data sets show that the proposed algorithm improves the generalization ability and the convergence speed.Moreover,it can greatly improve the active learning convergence speed and obtain relatively satisfactory learning ability by using the method of hierarchical refinement and stepwise refinement.
作者 贾俊芳
出处 《计算机应用》 CSCD 北大核心 2011年第8期2134-2137,共4页 journal of Computer Applications
基金 山西省青年科学基金资助项目(2011021013-2)
关键词 主动学习 层次聚类 分层细化 逐步求精 Active Learning(AL) Hierarchical Clustering(HC) hierarchical refinement stepwise refinement
  • 相关文献

参考文献16

  • 1DIMA C, HEBERT M, STENTZ A. Enabling learning from large datasets: Applying active learning to mobile robotics [ C]// ICRA 2004: Proceedings of the 2004 IEEE International Conference on Robotics and Automation. Piscataway, NJ: IEEE, 2004: 108- 114. 被引量:1
  • 2VLACHOS A. A stopping criterion for active learning [ J]. Comput- er Speech and Language, 2008, 22(3) : 295 -312. 被引量:1
  • 3张健沛,徐华.支持向量机(SVM)主动学习方法研究与应用[J].计算机应用,2004,24(1):1-3. 被引量:51
  • 4CORD M, COSSELIN P H, PHILIPP-FOLIGUET S. Stochastic ex- ploration and active learning for image retrieval [ J]. Image and Vi- sion Computing, 2007, 25(1) : 14 -23. 被引量:1
  • 5田春娜,高新波,李洁.基于嵌入式Bootstrap的主动学习示例选择方法[J].计算机研究与发展,2006,43(10):1706-1712. 被引量:8
  • 6韩光,赵春霞,胡雪蕾.一种新的SVM主动学习算法及其在障碍物检测中的应用[J].计算机研究与发展,2009,46(11):1934-1941. 被引量:14
  • 7TONG S, KOLLER D. Support vector machine active learning with applications to text classification [ J]. Journal of Machine Learning Research, 2002, 2(1): 45-66. 被引量:1
  • 8ABE N, MAMITSUKA H. Query learning strategies using boosting and bagging [ C]//Proceedings of the 15th International Conference on Machine Learning. San Francisco, CA: Morgan Kanfmann Pub- lishers, 1998:1-9. 被引量:1
  • 9BAEZA-YATES R, HURTADO C, MENDOZA M. Query clustering for boosting Web page ranking [ C]// AWIC 2004: Proceedings of the Second International Atlantic Web Intelligence Conference, LNCS 3034. Berlin: Springer-Verlag, 2004, 3034:164 - 175. 被引量:1
  • 10FINE S, GILAD-BACHRACH R, SHAMIR E. Query by commit- tee, linear separation and random walks [ J]. Theoretical Computer Science, 2002, 284(1): 25-51. 被引量:1

二级参考文献46

  • 1武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 2凌俊斌,庄卫华,刘鲁西.图像检索中的主动学习及其可测量性[J].计算机技术与发展,2006,16(2):132-134. 被引量:3
  • 3刘晶,郭雷,聂晶鑫.基于SVM的一种新的分类器设计方法[J].计算机应用研究,2006,23(7):181-182. 被引量:5
  • 4田春娜,高新波,李洁.基于嵌入式Bootstrap的主动学习示例选择方法[J].计算机研究与发展,2006,43(10):1706-1712. 被引量:8
  • 5Rocchio J. Relevant feedback in information retrieval[ M]//In Salton G. The smart retrieval system - experiments in automatic document processing. Englewood Cliffs, NJ: [s. n. ], 1971. 被引量:1
  • 6MeCaUum A, Nigam K. A comparison of event models for naive Bayes text classification [ C]//AAAI - 98 Workshop on Learning for Text Categorization. [s. l. ] :AAAI Press, 1998. 被引量:1
  • 7Guyon I, Boser B, Vapnik V. Automatic capacity tuning of very large Vcdimension classifiers[J ]. Advances in Neural Information Processing Systems, 1993(5):147- 155. 被引量:1
  • 8Igam K,McCallum A,Thrun S,et al. Learning to classify text from labeled and unlabeled documents [ C]//In: Mostow J, Madison C R. Proceedings d the 15th National Conference on Artificial Intelligence. Wisconsin: AAAI Press, 1998:792- 799. 被引量:1
  • 9Engelbreeht A P, Cloete I. Incremental Learning Using Sensitivity Analysis[C]//Neural Networks, 1999. IJCNN apos; 99. International Joint Conferenoe. [s. l. ] : IEEE Press, 1999: 1350 - 1355. 被引量:1
  • 10Thompson C A,Califf M E,Mooney R J. Active Learning for Natural Language Parsing and Information Extraction[C]// In:Proceedings of the sixteenth International Machine Learning Conference. Slovenia: [ s. n. ], 1999. 被引量:1

共引文献87

同被引文献29

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部