期刊文献+

基于Gabor小波变换的人脸疲劳模式识别 被引量:2

Fatigue pattern recognition of human face based on Gabor wavelet transform
下载PDF
导出
摘要 疲劳是造成交通事故的主因之一,提出了一种基于Gabor小波变换的疲劳监控新方法。首先,在训练阶段采用频繁模式挖掘算法对疲劳脸部图像序列集进行疲劳模式挖掘;然后,在疲劳识别阶段,将待检测的脸部图像序列基于Gabor小波变换表示为融合特征序列;最后,采用分类算法进行人脸序列的疲劳检测。对自行收集的一天内500幅疲劳图像的仿真结果表明,所提方法正确检测率达到92.8%,错误检测率达到0.02%,优于比较算法。 Fatigue is one of the main factors that cause traffic accidents.A new method for monitoring fatigue state based on Gabor wavelet transform was proposed.In this method,the frequent patterns mining algorithm was designed to mine the fatigue patterns of fatigue facial image sequences during the training phase first.And then,during the fatigue recognition phase,the face image sequence to be detected was represented by fused feature sequence through Gabor wavelet transform.Afterwards,the classification algorithm was used for fatigue detection of the human face sequence.The simulation results on 500 fatigue images sampled by the authors show that the proposed algorithm achieves 92.8% in right detection rate and 0.02% in error detection rate,and outperforms than some similar method.
出处 《计算机应用》 CSCD 北大核心 2011年第8期2119-2122,共4页 journal of Computer Applications
关键词 疲劳模式 GABOR小波变换 频繁模式 图像序列 fatigue pattern Gabor wavelet transform frequent pattern image sequence
  • 相关文献

参考文献9

  • 1陈勇,黄琦,刘霞,张昌华.一种全天候驾驶员疲劳检测方法研究[J].仪器仪表学报,2009,30(3):636-640. 被引量:25
  • 2王荣本,郭克友,储江伟,初秀民.适用驾驶员疲劳状态监测的人眼定位方法研究[J].公路交通科技,2003,20(5):111-114. 被引量:48
  • 3HEITMANN A, GUTTKUHN R. Technologies for the monitoring and prevention of driver fatigue [ C]// Proceedings of International Driving Symposium on Human Factors in Driver Assessment, Train- ing and Vehicle Design. Piscataway, NJ: IEEE Press, 2001: 81- 86. 被引量:1
  • 4CHU J W, JIN L S, TONG B L. A monitoring method of driver mouth behavior based on machine vision [ C]// Proceedings of the Intelligent Vehicles Symposium of IEEE. Piseataway, NJ: IEEE Press, 2004:351-356. 被引量:1
  • 5FAN XIAO, SUN YANFENG, YIN BAOCAI, et al. Gabor-based dy- namic representation for human fatigue monitoring in facial image se- quences [J]. Pattern Recognition Letters, 2010, 2(1): 234-243. 被引量:1
  • 6LIU CHENGJUN, WECHSLER H. Gabor feature based classifica- tion using the enhanced Fisher linear discriminant model for face recognition [ J]. tEEE Transactions on Image Processing, 2002, 11 (4) : 467 -476. 被引量:1
  • 7AGRAWAL R, SRIKANT R. Mining sequential patterns [ C]// Proceedings of International Conference on Data Engineering. Piscat- away, NJ: IEEE Press, 1995:3-14. 被引量:1
  • 8PEI JIAN, HAN JIAWEI, MORTAZAVI-ASL B, et al. Mining se- quential patterns by pattern-growth: The PrefixSpan approach [ J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16 (10): 1-17. 被引量:1
  • 9WANG LEI, WEI RUIZHONG, LIN YAPING, et d. A clique based node scheduling method for wireless sensor networks [ J]. Journal of Network and Computer Applications, 2010, 33(4): 383-396. 被引量:1

二级参考文献18

  • 1朱树先,张仁杰.BP和RBF神经网络在人脸识别中的比较[J].仪器仪表学报,2007,28(2):375-379. 被引量:30
  • 2WANG Q,YANG J G. Driver fatigue detection: A survey [ C]. Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on Volume 2, 21-23 June 2006(s) :8587 - 8591. 被引量:1
  • 3ZHANG;Z T,ZHANG J S. A new real-time eye tracking for driver fatigue detection [ C ]. ITS Telecommunications Proceedings, 2006 6th International Conference on, June 2006:8 - 11. 被引量:1
  • 4WANG Q, YANG W K. Eyelocation in face images for driver fatigue monitoring [ C ]. ITS Telecommunications Proceedings, 2006 6th International Conference on, June 2006 : 322 -325. 被引量:1
  • 5ZHANG Z T, ZHANG J S. Driver fatigue detection based intelligent vehicle control [ C ]. Pattern Recognition 2006. ICPR 2006. 18th International Conference on Volume 2, 2006 ) : 1262-1265 被引量:1
  • 6JI Q,ZHU Z W,et al. Real-time nonintrusive monitoring and prediction of driver fatigue [ J ]. Vehicular Technology, IEEE Transactions on, 2004 ( 53 ) : 1 052 - 1068 被引量:1
  • 7YANG G,LIN, Y. A driver fatigue recognition model using fusion of multiple features [ C ]. Systems, Man and Cybernetics, 2005 IEEE International Conference on. 2005,2 : 1777 - 1784. 被引量:1
  • 8WEI J M ,ZHANG J G. Image data fusion based on fuzzy neural network [ C ] . Proceedings of the Seventh IASTED International Conference on Signal and Image Processing, SI P2005, 185-189. 被引量:1
  • 9OTHMAN H, ABOULNASR T. Hybrid hidden Markov model for face recognition [ C ]. Image Analysis and Interpretation, 2000. Proceedings. 4th IEEE Southwest Symposium. 2000:36 - 40. 被引量:1
  • 10G Chow, X Li.Towards Asystem for Automatic Facial Feature Detection[J] .Pattern Recognition, 1993, 26 (12): 1739- 1755. 被引量:1

共引文献70

同被引文献22

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部