期刊文献+

一种雨景视频图像的复原方法 被引量:2

A restoration algorithm for rain video image
下载PDF
导出
摘要 文章分析了视频中雨的时空特性和色度特性,并基于这2个特性,提出了一种简单而有效的利用序列图片检测和去除视频中雨的方法。首先优化了K均值的时间复杂度,然后依据雨的时空特性,运用改进的K均值方法对各个像素进行聚类操作;依据雨的色度特性准确区分出雨区,从而成功地完成了检测;利用统计特性对背景像素值进行估计,代替雨的像素值。为了得到更加清晰的复原结果,融合了检测之前的预处理和去雨后的非雨区滤波处理,形成了一套完整的雨景图像复原方法。实验结果表明,该方法是简单而且有效的。 In this paper,the spatio-temporal property and the chromatic property of rain in the video are analyzed.Based on the two properties,a simple and effective algorithm is proposed to detect and remove the rain in the video by using sequential image.Firstly the time complexity of K-means is optimized by the algorithm.Then each pixel is classified by the optimized K-means according to the spatio-temporal property of rain and the rain parts are identified accurately according to the chromatic property of rain for the rain detection.For the rain removal,the color of streak is replaced by the proportion-blending color of the rain's color and the background's color based on the statistic characteristics.And for achieving a clearer restoration result,the original images are preprocessed before the detection and filtering is carried out for the no-rain parts after rain removal.Experimental results prove that the proposed algorithm is simple and effective.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第7期1011-1014,共4页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(60705015)
关键词 雨的检测 雨的去除 图像复原 色度特性 K均值 rain detection rain removal image restoration chromatic property K-means
  • 相关文献

参考文献11

  • 1Narasimhan S G, Nayar S K. Vision and the atmosphere [J]. IJCV, 2002,48 (3), 233-254. 被引量:1
  • 2Garg K,Nayar S K. Photometric model of a rain drop[D]. New York: Department of Computer Science of Columbia University, 2003. 被引量:1
  • 3Garg K,Nayar S K. Photorealistic rendering of rain streaks [J]. ACM TOG,2006,25 :996-1002. 被引量:1
  • 4Garg K, Nayar S K. Detection and removal of rain from vid eos[C]//Proceedings of the 2004 IEEE Oamputer Society Conference on Computer Vision and Pattern Recognition, Vol 1,2004:528-535. 被引量:1
  • 5张颖翔,陈强,刘允才.视频图像中雨滴检测与去除方法研究[J].微型电脑应用,2007,23(12):16-20. 被引量:11
  • 6Zhang Xiaopeng, Li Hao. Rain removal in video by combining temporal and chromatic properties[C]//1CME, 2006:461-464. 被引量:1
  • 7徐晶,刘鹏,刘家锋,唐降龙.一种受雨滴影响的运动目标检测方法[J].计算机研究与发展,2009,46(11):1885-1892. 被引量:4
  • 8Matsushita Y, Ofek E, Tang X, et al. Full-frame video stabi lization[C]//Proeedings of the 2005 IEEE Computer Soci ety Conference on Computer Vision and Pattern Recogni tion, Vol 1,2005 : 50-57. 被引量:1
  • 9Bergen J R,Anandan P, Hanna K J,et al. Hierarchical mod el-based motion estimation[C]//ECCV, 1992:237-252. 被引量:1
  • 10李昊.新阈值函数及其小波去噪研究[J].合肥工业大学学报(自然科学版),2008,31(10):1672-1675. 被引量:7

二级参考文献16

  • 1K. Garg and S. K. Nayar. Detection and removal of rain from videos[C]. Proc. CVPR 2004, vol. 1, pp. 528-535. 被引量:1
  • 2Xiaopeng Zhang, Hao Li, Yingyi Qi, Wee Kheng Leow, Teck Khim Ng. Rain removal in video by combining temporal and chromatic properties[C]. Proc. ICME 2006. 被引量:1
  • 3K. Garg and S. K. Nayar. When does a camera see rain [C]. Proc. ICCV 2005. , vol. 2, pp. 1067-1074. 被引量:1
  • 4K. Garg and S. K. Nayar. Photometric Model of a Rain Drop[D]. Computer Science Department, Columbia University. 被引量:1
  • 5Donoho D L. De-noising by soft-thresholding[J]. IEEE Trans Inform Theory, 1995, 41(3):613--627. 被引量:1
  • 6Donoho D L,Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage [J]. Journal of the American Statistical Association, 1995,90(12):1200-- 1224. 被引量:1
  • 7Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage [J]. Biometrika, 1994, 81 (3): 425--455. 被引量:1
  • 8Bruce A G, Gao Hongye. Understanding wave shrink: variance and bias estimation[J]. Biometrika, 1996,83 (4) : 727--745. 被引量:1
  • 9Goupillaud P, Grossmann A, Morlet J. Cycle-octave and related transforms in seismic signal analysis[J]. Geoexploration, 1984,23(1) : 85-- 102. 被引量:1
  • 10Gao Hongye, Bruce A G. Wave Shrink and semisoft shrinkage[R]. StaSci Research Report No. 39, 1995. 被引量:1

共引文献19

同被引文献13

  • 1章毓晋.图像工程(上册)-图像处理[M].第2版,北京:清华大学出版社,2005. 被引量:1
  • 2GARG K,NAYAR S K.Vision and Rain[J].International Journal of Computer Vision,2007,75(01):3-27. 被引量:1
  • 3MARSHALL J S,PALMER W M K.The Distribution of Raindrops with Sizes[J].Journal of Meterology,1984(05):165-166. 被引量:1
  • 4GARG K,NAYAR S K.When does a Camera See Rain?[C].USA:IEEE International Conference on Computer Vision,2005:1067-1074. 被引量:1
  • 5BREWER N,LIU N J.Using the Shape Characteristics of Rain to Identify and Remove Rain from Video[J].Lecture Notes in Computer Science,2008(5342):451-458. 被引量:1
  • 6BARNUMP,KANADE T,NARASIMHAN S.Analysis of Rain and Snow in Frequency Space[J].Internal Journal of Computer Vision,2009,86(02):256-274. 被引量:1
  • 7STARIK K,WERMAN M.Simulation of Rain in Videos[C].[s.l.]:Texture Workshop,2002. 被引量:1
  • 8GARG K,NAYAR S K.Detection and Removal of Rain from Videos[C].USA:IEEE.Conference on Computer Vision and Pattern Recognition,2004:528-535. 被引量:1
  • 9ZHANG X,LI H,QI Y,et al.Rain Removal in Video by Combining Temporal and Chromatic Properties[C].Canada: IEEE International Conference on Multimedia and Expo,2006:461-464. 被引量:1
  • 10BEZDEK J C.A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithm[C].USA:IEEE,1980,1(2):1-8. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部