期刊文献+

一种光滑局部敏感鉴别分析方法

Smooth Locality Sensitive Discriminant Analysis Method
下载PDF
导出
摘要 传统的局部敏感鉴别分析方法未考虑原有图像样本像素关系信息,识别效果受到影响。为此,提出一种光滑局部敏感鉴别分析方法。针对图像样本构造一个基于离散拉谱拉斯图的正则化项,该正则化项包含图像像素关系的先验信息,并将其嵌入到局部敏感鉴别分析的目标函数中,使抽取的特征具有空间光滑的特性,从而增强局部敏感鉴别分析算法的泛化能力。在ORL和IMDB人脸数据集上的实验结果证明了该方法的有效性。 Locality Sensitive Discriminant Analysis(LSDA) is a recent proposed supervised feature extraction algorithm.LSDA can not only utilize the class information but also consider the the intrinsic geometrical structure of the data.However,LSDA is a vector based method so it neglecteds the spatial correlation of the pixels in the image,and its performance may be degraded in this case.To solve the problem,this paper proposes a Smooth LSDA(S-LSDA) method.It introduces a spatially smooth regularization which incorporates the spatial correlation information into the objective function of LSDA.It shows that the derived coefficients are spatially smooth and the extracted features are more effective for classification.Experimental results on face image databases show the effectiveness of the proposed algorithm
作者 徐春明
出处 《计算机工程》 CAS CSCD 北大核心 2011年第13期190-192,共3页 Computer Engineering
基金 江苏省高校自然科学基础研究基金资助项目(09KJB510018)
关键词 局部敏感鉴别分析 光滑局部敏感鉴别分析 光滑正则化 特征抽取 人脸识别 Locality Sensitive Discriminant Analysis(LSDA) Smooth LSDA(S-LSDA) smooth regularization feature extraction face recognition
  • 相关文献

参考文献12

  • 1韩成茂.基于类内加权平均值的模块PCA算法[J].计算机工程,2009,35(22):194-196. 被引量:7
  • 2Bartlett M S, Movellan J R, Sejnowski T J. Face Recognition by Independent Component Analysis[J]. IEEE Trans. on Neural Networks, 2002, 13(6): 1450-1464. 被引量:1
  • 3He Xiaofei, Yan Shuicheng, Hu Yuxiao, et al. Face Recognition Using Laplacianfaces[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340. 被引量:1
  • 4张燕平,窦蓉蓉,赵姝,曹振田.基于集成学习的规范化LDA人脸识别[J].计算机工程,2010,36(14):144-146. 被引量:6
  • 5Friedman J. Regularized Discriminant Analysis[J]. Journal of the American Statistical Association, 1989, 84(405): 165-175. 被引量:1
  • 6Yang M H. Kernel Eigenfaces vs. Kernel Fisherfaces: Face Recog- nition Using Kernel Methods[C]//Proc. of the 5th IEEE Interna-tional Conference on Automatic Face and Gesture Recognition. Washington D. C., USA: IEEE Computer Society, 2002. 被引量:1
  • 7Li Ming, Yuan Baozong. 2D-LDA: A Statistical Linear Discri- minant Analysis for Image Matrix[J]. Pattern Recognition Letters,2005, 26(5): 527-532. 被引量:1
  • 8Cai Deng, He Xiaofei, Zhou Kun. Locality Sensitive DiscriminantAnalysis[C]//Proc. of the 20th International Joint Conference onArtificial Intelligence. Hyderabad, India: [s. n.], 2007. 被引量:1
  • 9Hastie T, Buja A, Tibshirani R. Penalized Discriminant Analysis[J]. Annals of Statistics, 1995, 23(1): 73-102. 被引量:1
  • 10Cai Deng, He Xiaofei. Learning a Spatially Smooth Subspacefor Face Recognition[C]//Proc. of IEEE Conference on ComputerVision and Pattern Recognition. Minneapolis, Minnesota, USA: IEEE Press, 2007. 被引量:1

二级参考文献14

  • 1王琳,冯正进,刘成良,崔光亮.集成多分类器的人脸识别[J].计算机工程,2004,30(17):3-4. 被引量:1
  • 2尹洪涛,付平,孟升卫.基于自适应加权Fisherface算法的人脸识别[J].光电子.激光,2006,17(11):1405-1408. 被引量:14
  • 3陈伏兵,杨静宇.分块PCA及其在人脸识别中的应用[J].计算机工程与设计,2007,28(8):1889-1892. 被引量:26
  • 4Tan Xiaoyang, Chen Songcan. Face Recognition from a Single Image per Person: A Survey[J]. Pattern Recognition, 2006, 39(9): 1725-1745. 被引量:1
  • 5Phillips P J, Flynn P J, Scruggs T, et al. Overview of the Face Recognition Grand Challenge[C]//Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [S. l.]: IEEE Press, 2005. 被引量:1
  • 6Lu Juwei, Plataniotis K, Venetsanopoulos A. Face Recognition Using LDA-based Algorithms[J]. 1EEE Trans. on Neural Networks, 2003,14(1): 195-200. 被引量:1
  • 7Kwak K C, Pedrycz W. Face Recognition Using an Enhanced Independent Component Analysis Approach[J]. IEEE Trans. on Neural Networks, 2007, 18(2): 530-541. 被引量:1
  • 8Marcialis G L,Roli F.Fusion of LDA and PCA for Face Verification[C] //Proc.of the Workshop on Biometric Authentication.[S.l.] :Springer,2002:30-39. 被引量:1
  • 9Yu Hua,Yang Jie.A Direct LDA Algorithm for High-dimensional Data with Application to Face Recognition[J].Pattern Recognition,2001,34(10):2067-2070. 被引量:1
  • 10Lu Juwei,Plataniotis K N,Venetsanopoulos A N.Regularization Studies of Linear Discriminant Analysis in Small Sample Size Scenarios with Application to Face Recognition[J].Pattern Recognition Letter,2005,26(2):181-191. 被引量:1

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部