期刊文献+

静液传动混合动力车辆驱动系统优化匹配 被引量:8

Optimal matching on driving system of hydraulic hybrid vehicle
下载PDF
导出
摘要 为了解决通用优化算法无法有效计算静液传动混合动力车辆驱动系统优化匹配时设计变量具有复杂约束的问题,建立液压泵/马达排量与其转速范围的规则知识库,采用基于该规则知识库的自适应模拟退火遗传算法,对轮边驱动静液传动混合动力车辆的驱动系统关键元件及系统参数进行优化匹配.对优化后的混合动力车辆的节能和动力特性进行仿真分析,并采取能量对应方法对启动-制动-启动工况进行模拟试验.仿真和模拟试验结果表明,基于规则知识库的自适应模拟退火算法合理有效,优化后的混合动力车辆节能和动力性能均优于相应的传统车辆. To solve the problem that general optimize algorithms couldn't effectively calculate the designed variables with complex restrictions,a hydraulic pump/motor displacements and their rotate speed restrictions rule based knowledge-base(RKB) was proposed,and the RKB adaptive simulated annealing genetic algorithm(ASAGA) was introduced to optimize the main components and system parameters of wheel drive hydraulic hybrid vehicle(WDHHV) driving system.The energy saving and propulsion characters of the optimized WDHHV were analyzed by simulation,and simulated experiments of the WDHHV with a start-stop-start working cycle according to the corresponding energy were carried out.All the simulation and simulated experiments results show that the proposed RKB ASAGA is reasonable and effective,and the energy saving and propulsion characters of the optimized WDHHV are all better than that of the traditional vehicle.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2011年第7期66-70,共5页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(50875054) 浙江大学流体传动及控制国家重点实验室开放基金资助项目(GZKF-2008003)
关键词 静液传动混合动力 优化匹配 规则知识库 遗传算法 hydraulic hybrid optimal matching rule based knowledge-base genetic algorithm
  • 相关文献

参考文献5

二级参考文献29

  • 1LUAN Shangmin,DAI Guozhong,LI Wei.A programmable approach to revising knowledge bases[J].Science in China(Series F),2005,48(6):681-692. 被引量:7
  • 2吴振寰,王鹏伟.Petri网关联矩阵与PNML描述之间的转换[J].计算机工程与应用,2006,42(21):32-34. 被引量:4
  • 3姜继海,卢红影,周瑞艳,于庆涛,郭娜.液压恒压网络系统中液压变压器的发展历程[J].东南大学学报(自然科学版),2006,36(5):869-874. 被引量:29
  • 4Momoh J A, El-Hawary M E, Adapa R. Nonlinear and Quadratic Programming Approaches, Part Ⅰ [ J ]. A Review of Selected Optimal Power Flow Literature to 1993,1999, 14( 1 ) :96-104. 被引量:1
  • 5Momoh J A, EI-Hawary M E, Adapa R. Newton, Linear Programming and Interior Point Methods, Part Ⅱ [ J]. A Review of Selected Optimal Power Flow Literature to 1993,1999, 14( 1 ) :105-111. 被引量:1
  • 6Bakirtzis A G, et al. Optimal Power Flow by Enhanced Genetic Algorithm [ J ]. IEEE Trans on Power Systems,2002,17 (2) :229-236. 被引量:1
  • 7Zhang X, Dunn R W, Li F. Stability Constrained Optimal Power Flow for the Balancing Market Using Genetic Algorithms [ A]. Proceedings of IEEE PES General Meeting. Toronto(Canada) :2003. 被引量:1
  • 8Roa-Swpulveda C A, Pavez-Lazo B J. A Solution to the Optimal Power Flow Using Simulated Annealing[ J]. Electrical Power and Energy Systems, 2003,25:47-57. 被引量:1
  • 9Abido M A. Optimal Power Flow Using Particle Swarm Optimization[ J]. Electrical Power and Energy Systems,2002,24: 563-571. 被引量:1
  • 10Chen L, Matoba S, Inabe H, et al. Surrogate Constraint Method for Optimal Power Flow[ J]. IEEE Trans on Power Systems, 1998, 13(3) :1084-1089. 被引量:1

共引文献26

同被引文献64

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部