摘要
背景:在传统的图像分割方法中,模糊C均值聚类算法应用十分广泛。目的:将改进的模糊C均值聚类算法应用到MRI图像的分割中,提高MRI图像分割的准确度。方法:针对传统的基于Minkowski距离的模糊C均值聚类算法,提出了基于点对称距离的模糊C均值聚类算法,并将其运用到了脑部MRI图像分割中。结果与结论:实验结果表明,与模糊C均值聚类算法相比,点对称距离的模糊C均值聚类算法有明显的优势。
BACKGROUND: Image segmentation is a significant step of image processing and analysis. Within the traditional segmentation methods, fuzzy C means clustering (FCM) is applied widely. OBJECTIVE: To introduce point symmetry distance (PS)-FCM (PS-FCM) algorithm into the MRI brain image segmentation so as to promote the accuracy of MRI image segmentation. METHODS: In connection with the traditional FCM algorithm based on Minkowski distance, this pepper introduces PS-FCM algorithm into the MRI brain image segmentation. RESULTS AND CONCLUSION: Experimental results show that PS-FCM has obvious advantages compared with traditional FCM algorithm.
出处
《中国组织工程研究与临床康复》
CAS
CSCD
北大核心
2011年第22期4084-4086,共3页
Journal of Clinical Rehabilitative Tissue Engineering Research