期刊文献+

The approximate conserved quantity of the weakly nonholonomic mechanical-electrical system

The approximate conserved quantity of the weakly nonholonomic mechanical-electrical system
下载PDF
导出
摘要 We study the approximate conserved quantity of the weakly nonholonomic mechanical-electrical system. By means of the Lagrange-Maxwell equation, the Noether equality of the weakly nonholonomic mechanical-electrical system is obtained. The multiple powers-series expansion of the parameter of the generators of infinitesimal transformations and the gauge function is put into a generalized Noether identity. Using the Noether theorem, we obtain an approximate conserved quantity. An example is provided to prove the existence of the approximate conserved quantity. We study the approximate conserved quantity of the weakly nonholonomic mechanical-electrical system. By means of the Lagrange-Maxwell equation, the Noether equality of the weakly nonholonomic mechanical-electrical system is obtained. The multiple powers-series expansion of the parameter of the generators of infinitesimal transformations and the gauge function is put into a generalized Noether identity. Using the Noether theorem, we obtain an approximate conserved quantity. An example is provided to prove the existence of the approximate conserved quantity.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第7期28-31,共4页 中国物理B(英文版)
关键词 weakly nonholonomic mechanical-electrical system Noether theorem approximate conserved quantity weakly nonholonomic mechanical-electrical system, Noether theorem, approximate conserved quantity
  • 相关文献

参考文献24

  • 1Noether E 1918 Nacher. Akad. Wiss. Gottingen Math. Phys. KIII 235. 被引量:1
  • 2Lucky M 1979 J. Phys. A: Math. Gen. 19 105. 被引量:1
  • 3Mei F X 2000 J. Beijing Inst. Technol. 9 120. 被引量:1
  • 4Mei F X 2001 Chin. Phys. 10 177. 被引量:1
  • 5Li Z P 1993 Classical and Dynamics of Constrained Sys- tems and Their Symmetrical Properties (Beijing: Beijing Polytechnic University press) (in Chinese). 被引量:1
  • 6Mei F X 1999 Application of Lie Group and Lie Alge- bras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese). 被引量:1
  • 7Bihar L Y and Kearny H G 1987 Int. J. Non-Linear Mech. 22 125. 被引量:1
  • 8Mei F X 2000 Acta Mech. Sin. 141 135. 被引量:1
  • 9Mei F X 2003 Acta Phys. Sin. 52 1048 (in Chinese). 被引量:1
  • 10Zhang Y 2003 Acta Phys. Sin. 52 1832 (in Chinese). 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部