期刊文献+

二次比式和问题的加速分枝定界算法 被引量:2

Accelerating Branch and Bound Algorithm for Sum of Quadratic Ratios Problem
原文传递
导出
摘要 本文给出非凸二次约束上二次比式和问题(P)的一个新的加速分枝定界算法.该算法利用线性化技术建立了问题(P)的松弛线性规划问题(RLP),通过对其可行域的细分和求解一系列线性规划问题,不断更新(P)的全局最优值的上下界.为了提高收敛速度,从最优性和可行性两方面,提出了新的删除技术,理论上证明该算法是收敛的,数值试验表明了算法的有效性和可行性. The paper presents a new accelerating branch and bound algorithm for solving sum of quadratic ratios problem with nonconvex quadratic constraints(P).The algorithm establishes the linear relaxation programming problem(RLP) of problem(P) utilizing the linearizing technique.Through the successive refinement of the feasible region and the solution of a series of the linear programming problems,the upper and lower bounds of global optimal value are continuously updated.In order to accelerate convergence,a new deleting technique is given according to the optimality and feasibility.The proposed algorithm is proved to be convergent,and the numerical experiments show the efficiency and feasibility.
出处 《应用数学学报》 CSCD 北大核心 2011年第4期712-722,共11页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10671057)资助项目
关键词 二次比式和 加速分枝定界 全局优化 删除准则 sum of quadratic ratios accelerating branch and bound global optimization deleting rule
  • 相关文献

参考文献1

二级参考文献9

  • 1Sui Y K. The expansion of functions under transformation and its application to optimization, Comput [J]. Methods Appl. Mech. Engrg, 1994,113:253-262. 被引量:1
  • 2Benson H P. On the global optimization of sums of linear fractional functions over a convex Set[J]. Journal of Optimization Theory and Applications,2004,121:19-39. 被引量:1
  • 3Kuno T. A revision of trapexziodal branch and bound algorithm for linear sum of rations problems[J]. Journal of Global Optimization, 2005,33 : 215-234. 被引量:1
  • 4Qu S J, Zhang K C. A global optimization algorithm using parametric linearization relaxation[J]. Applied Mathematics and Computation, 2007,186:763-771. 被引量:1
  • 5Qu S J,Zhang K C. An efficient algorithm for globally minimizing sum of quadratic ratios problem with nonconvex quadrtic constraints[J]. Applied Mathematics and Computation, 2007,189: 1624-1636. 被引量:1
  • 6Freund R W,Jarre F. Sloving the sum-of-ratios problem by an interior-point method[J]. Journal of Global Optimization, 2001,19 : 83-102. 被引量:1
  • 7Shen P P, Duan Y P. A simplicial branch and duality bound algorithm for the sum of convex-convex ratios proplem[J]. Journal of Computational and Applied Mathematics,2009,223:145-158. 被引量:1
  • 8An L T H. Tao P T. A branch and bound method via d. c. optimization algorithms and ellipsoidal technique for box constrained nonconvex quadratic problems[J]. Journal of Global Optimization, 1998, 13: 171-206. 被引量:1
  • 9Shen P P, Li X I,Jiao H W. Accelerating method of Global optimization for signomial geometric programming[J]. Journal of Computational and Applied Mathematics,2008,214: 66-77. 被引量:1

共引文献5

同被引文献18

  • 1申培萍,焦红伟.一类非线性比式和问题的全局优化算法[J].河南师范大学学报(自然科学版),2006,34(3):5-8. 被引量:3
  • 2申培萍.全局优化方法[M].北京:科学出版社,2007. 被引量:2
  • 3袁亚湘,孙文瑜.最优化理论与方法[M].上海:科学出版社,2003:241-384. 被引量:3
  • 4KONNO H,INORI M.Bond portfolio optimization by bi-linear fractional programming[J].Journal of the Opera-tions Research Society of Japan,1989,32:143-158. 被引量:1
  • 5MAJHI J,JANARDAN R,SMID M,et al.On some geo-metric optimization problems in layered manufacturing[J].Computational Geometry,1999,12:219-239. 被引量:1
  • 6QU S J,ZHANG K C,JI Y.A global optimization algo-rithm using parametric linearization relaxation[J].Ap-plied Mathematics and Computation,2007,186:763-771. 被引量:1
  • 7SHEN P P,LI X A,JIAO H W.Accelerating method ofglobal optimization for signomial geometric programming[J].Journal of Computational and Applied Mathematics,2008,214:66-77. 被引量:1
  • 8FREUND R W,JARRE F.Sloving the sum-of-ratiosproblem by an interior-point method[J].Journal ofGlobal Ptimization,2001,19:83-102. 被引量:1
  • 9BENSON H P.A simplicial branch and bound duality-bounds algorithm for the linear sum-of-ratios problem.[J].European Journal of Operational Research,2007,182:597-611. 被引量:1
  • 10WANG Y J,ZHANG K C.Global optimization of nonlin-ear sum of ratios problem[J].Applied Mathematics andComputation1,2004,158:319-330. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部