期刊文献+

基于双目视觉的关键点的检测方法及定位研究 被引量:8

Study on Key Point Detection and Localization Based on Binocular Vision
下载PDF
导出
摘要 以双目立体视觉测量为背景,以显著性标志物中的关键点为目标,提出了基于颜色阈值分割的关键点的实时检测和定位方法;关键点的检测和定位主要分为3个过程,一是图像的预处理部分,为后续的检测和定位提供基础;二是对预处理后的图像进行关键点检测,检测的方法首先分别通过颜色阈值分割、轮廓提取、多边形逼近以及设置矩形轮廓提取出关键点所在的显著性标志物,其次根据该显著性标志物的特点,采用hough变换提取线段,并通过最小二乘法进行直线拟合,求出关键点的精确的像素坐标;三是利用立体视觉三角测量原理,对求取的关键点进行精确的位姿计算;该方法实时性好、精度高,为后续的机器人视觉避障提供了一定的理论依据。 With the background of binocular stereo vision measurement and aiming at key point of obvious marker,a method based on color segmentation for key point detection and localization is presented.The detection and localization of key point includes three parts.The first part is image preprocessing for the following detection and localization.The second is key point detection,the detection method is through color segmentation,contour extraction,polygonal approximation,setting rectangular boundary and find the obvious marker.Then according to the feature of the obvious marker,we adopt Hough line segment detection,then fits the edge points by Lease Square Error(LSE) method,The coordinates of the key points are calculated by the equations of lines.Finally,the distance and orientation from camera to the key point is acquired accurately based on triangulation of binocular vision.The experiment result shows that the method greatly improves accuracy and real-time performance.It provides foundation for obstacle-avoidance of mobile robot.
出处 《计算机测量与控制》 CSCD 北大核心 2011年第7期1565-1568,共4页 Computer Measurement &Control
基金 国家863计划项目(2007AA04Z226) 北京市教育委员会科技发展计划面上项目(KM200810005016) 北京市教委科技创新平台项目(0020005466018)
关键词 双目视觉 关键点 阈值分割 定位 binocular vision key point threshold segmentation localization
  • 相关文献

参考文献6

  • 1张广军著..视觉测量[M].北京:科学出版社,2008:335.
  • 2S. T. Barnard, M. A. Fisehler. Computational stereo [J]. ACM Computing Survey, 1982, 14 (4): 533-572. 被引量:1
  • 3马颂德 张正友.计算机视觉-计算理论与算法基础[M].北京:科学出版社,1997.. 被引量:27
  • 4Andrea Fusiello, Emanuele Trucco, Alessandro Verri. A compact algorithm for reetication of stereo pairs[J]. Machine Vision and Applications, 2000, 12: 16-22. 被引量:1
  • 5Saturnino Maldonado--Bascon. Road--Sign Detection and Recogni tion Based on Support Vector Machines [J]. IEEE Tramsactopm Oft Intelligent Transportiation Systems, 2007, 8 (2) : 624 - 278. 被引量:1
  • 6于乃功,秦永钢,阮晓钢.立体匹配算法进展[J].计算机测量与控制,2009,17(5):817-819. 被引量:14

二级参考文献17

  • 1游素亚.立体视觉研究的现状与进展[J].中国图象图形学报(A辑),1997,2(1):17-24. 被引量:101
  • 2Barnard S T, Fisehler M A. Computational stereo [J]. ACM Computing Surveg, 1982,14(4):533-572. 被引量:1
  • 3Intille S S, Bobick A F. Disparity-space images and large occlusion stereo [A] . Proceedings of the third European conference on Computer Vision[C]. 1994,2:179-186. 被引量:1
  • 4Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [J]. International Journal of Computer Vision, 2002, 47(1/2/3): 7-42. 被引量:1
  • 5Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts[J]. IEEE Trans. Pattern Analysis and Machine Intelligence,2001,23 (11):1222-1239. 被引量:1
  • 6Brown M Z, Burschka D, Hager G D. Advances in computational stereo [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2003, 25(8): 993-1008. 被引量:1
  • 7Egnal G, Wildes R P.Detecting binocular half-occlusions:empirical comparisons of four approaches[A]. Proc. Computer Vision and Pattern Recognition[C].2000,2:466-473. 被引量:1
  • 8SRI Stereo Engine[EB/OL]. [2008-6-25]. http://www.ai.sri.com/-konolige/ svs/. 被引量:1
  • 9Point Grey Research Inc[EB/OL]. [2008-6-25]. http://www.ptgrey.com/ products/stereo.asp 被引量:1
  • 10Yang R, Pollefeys M. Multi-resolution real-time stereo on commodity graphics hardware[A]. Proc. Of IEEE Conference on Computer Vision and Pattern Recognition[C]. 2003(1): 211-220. 被引量:1

共引文献39

同被引文献82

  • 1李建.促进水稻科技创新和产业发展的专业性期刊[J].农业图书情报学刊,2005,17(12):157-160. 被引量:2
  • 2张辉,张丽艳,陈江,赵转萍.基于平面模板自由拍摄的双目立体测量系统的现场标定[J].航空学报,2007,28(3):695-701. 被引量:33
  • 3马颂德 张正友.计算机视觉[M].北京:科学出版社,1998.72-80. 被引量:194
  • 4SCHNEIDERPJ EBERLYDH 周长发 译.计算机图形学几何工具算法详解[M].北京:电子工业出版社,2005.. 被引量:20
  • 5Jong Dae Oh, C. -C. Jay Kuo. Robust Stereo Matching with Im- proved Graph and Surface Models and Occlusion Handling [J]. Journal of Visual Communication and Image Representation, 2010, 21 (5-6): 404-415. 被引量:1
  • 6Wang Daolei, Kah Bin Lim. Obtaining Depth Map From Segment- based Stereo Matching Using Graph Cuts[J]. Journal of Visual Communication and Image Representation, 2011, 22 (4) : 325 -331. 被引量:1
  • 7Daniel Scharstein, Richard Szeliski, Ramin Zabih. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Al- gorithms [A]. Proceedings of the IEEE Workshop on Stereo and Multi-Baseline Vision [C]. Kauai: IEEE, 2001: 131- 140. 被引量:1
  • 8Claron Technology Inc. MicronTracker Developer's Manual:MTC3[EB/OL].[2012-10-01].http://www.clarontech.com. 被引量:1
  • 9Northern Digital Inc. Polaris Spectra Tool Kit Guide[EB/OL].[2012-09-16].http://www.ndigital.com. 被引量:1
  • 10Shanghai Yinrui Information Technology Co., Ltd.. the Product Center for FA Lens of KOWA[EB/OL].[2013-05-14]http://www.yinrui.net/product.asp?id=3&pid=102. 被引量:1

引证文献8

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部