摘要
在分析区域碳排放变化驱动因素(能源结构、能源排放强度、能源效率、经济发展)的基础上,运用对数平均权重分解法(LMDI)构建了区域碳排放变化的因素分解模型。进而以重庆市为例,采集重庆市1997-2009年的能源、人口、经济等基础数据对碳排放变化的驱动因素进行实证研究。结果表明:重庆市碳排放总量与人均碳排放量随时间序列呈现逐渐上升的趋势,二者的演变趋势极为相似,均表现为明显的两阶段(平稳演进和快速演进)特征。碳排放变化因素分析显示,经济发展因素对人均碳排放量的贡献值逐年增大,构成拉动重庆碳排放量快速增长的主要驱动因素;能源效率因素对人均碳排放量发挥了较大的抑制作用,其抑制效应随研究时序逐渐增强;而能源结构因素对人均碳排放量的抑制效应不太明显。最后提出了控制重庆市碳排放的政策建议。
Based on analyzing driving factors of regional carbon emissions change which is included of energy structure,energy emission intensity,energy efficiency and economic development factors,this paper sets up a decomposition analysis model of regional carbon emissions change by employing logarithmic mean weigh division index method(LMDI).Moreover,through a case study of Chongqing,it acquires data of energy,population,economy and other basic data of Chongqing from 1997 to 2009 to empirical study.Empirical evaluation shows that: carbon emissions and per capita carbon emissions in Chongqing present an obviously upward trend with time series,their evolution trends are very similar and both show two-phases(smooth evolution and rapid evolution) feature.In addition,factor analysis of carbon emission change shows that the contribution value to carbon emissions per capita of economic development factors is increasing year by year,and economic development factors are main factors of driving a rapid growth of carbon emissions in Chongqing.The inhibitory effect of energy efficiency factors on carbon emissions per capita is increasing gradually,which plays a greater inhibition role in carbon emissions per capita.However,the inhibitory effect of energy structure factors on carbon emissions per capita is not significant.Finally,some policy recommendations on controlling carbon emissions in Chongqing are put forward based on empirical analysis.
出处
《重庆大学学报(社会科学版)》
CSSCI
北大核心
2011年第4期19-24,共6页
Journal of Chongqing University(Social Science Edition)
基金
重庆市软科学计划资助项目"重庆市循环经济评价指标体系与监测方法研究"(CSTC
2007CE9072)
重庆大学青年社科基金项目"老工业基地向低碳城市转型及其框架体系研究--以重庆市为例"(CDSK2009-29)
关键词
区域碳排放
因素分解模型
驱动因素
实证研究
regional carbon emissions
decomposition analysis model
driving factors
empirical study