期刊文献+

(0,1)-矩阵的对称链分解

Symmetric Chain Decomposition of (0,1)-matrices
下载PDF
导出
摘要 自1951 年de Bruijn 等人提出了对称链概念后,人们用这个特殊的偏序得到了许多优美的结果.如果一个偏序集可以分解成不相交的对称链之并,则称此偏序集具有对称链分解.目前已证明具有对称链分解结构的偏序还不多.把任意一个(0,1)-矩阵A 中的某些1 变成0 得到的矩阵叫做A的导出矩阵.L(A)表示A及其A的所有导出矩阵所组成的集合,在L(A)上定义序关系> :P1> P2,其中P2 是P1 的导出矩阵.本文构造性地证明了偏序集(L(A),> )具有对称链分解. Many beautiful results have been derived by symmetric chain since de Bruijn introduced it in 1951.A poset is called a symmetric chain decomposition if the poset can be expressed as a disjoint union of symmetric chains.A matrix P 2 is called a derived matrix of a (0,1) matrix P 1 if P 2 is obtained by changing some elements 1 into 0 in matrix P 1.L(A) denotes the set of A and its all derived matrices.Define order> as follow: P 1>P 2 if and only P 2 is a derived matrix of P 1.The poset (L(A),>) can be expressed as a disjoint of symmetric chains by constructive method.
作者 谭明术
出处 《西南民族学院学报(自然科学版)》 1999年第3期228-231,共4页 Journal of Southwest Nationalities College(Natural Science Edition)
关键词 导出矩阵 偏序集 O-1矩阵 对称链 对称链分解 (0,1)-matrices derived matrices posets symmetric symmetric chain decomposition
  • 相关文献

参考文献1

  • 1卢开澄.组合数学(第二版)[M].北京:清华大学出版社,1995.. 被引量:2

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部