摘要
自1951 年de Bruijn 等人提出了对称链概念后,人们用这个特殊的偏序得到了许多优美的结果.如果一个偏序集可以分解成不相交的对称链之并,则称此偏序集具有对称链分解.目前已证明具有对称链分解结构的偏序还不多.把任意一个(0,1)-矩阵A 中的某些1 变成0 得到的矩阵叫做A的导出矩阵.L(A)表示A及其A的所有导出矩阵所组成的集合,在L(A)上定义序关系> :P1> P2,其中P2 是P1 的导出矩阵.本文构造性地证明了偏序集(L(A),> )具有对称链分解.
Many beautiful results have been derived by symmetric chain since de Bruijn introduced it in 1951.A poset is called a symmetric chain decomposition if the poset can be expressed as a disjoint union of symmetric chains.A matrix P 2 is called a derived matrix of a (0,1) matrix P 1 if P 2 is obtained by changing some elements 1 into 0 in matrix P 1.L(A) denotes the set of A and its all derived matrices.Define order> as follow: P 1>P 2 if and only P 2 is a derived matrix of P 1.The poset (L(A),>) can be expressed as a disjoint of symmetric chains by constructive method.
出处
《西南民族学院学报(自然科学版)》
1999年第3期228-231,共4页
Journal of Southwest Nationalities College(Natural Science Edition)
关键词
导出矩阵
偏序集
O-1矩阵
对称链
对称链分解
(0,1)-matrices
derived matrices
posets
symmetric
symmetric chain decomposition