期刊文献+

从泛音的发现到傅立叶级数理论的建立 被引量:2

The Course from the Discovery of Harmonics to the Establishment of the Theory of Fourier Series
原文传递
导出
摘要 对协和音程的较低音调中存在较高音调这一现象的剖析引出了泛音概念。对基音与泛音共存现象的深入研究提出了简单模式叠加观念。傅立叶在简单模式叠加观念的启发下建立了其级数理论。从泛音的发现到傅立叶级数理论的建立是一个漫长的历史过程,对此过程的历史考察是研究傅立叶级数理论的起源、实质及内核的重要方面,同时也是揭示数学与音乐之间联系的重要视角。 Through analyzing the phenomenon of higher pitch existing in lower pitch in consonance,the concept of harmonics was put forward.Then the notion of superposition of simple modes emerged from the thorough study on the phenomenon of fundamental tone coexisting with overtone.With the enlightenment of the notion of superposition of simple modes,Fourier set up the theory of trigonometric series.From the discovery of harmonics to the establishment of the theory of Fourier series,it was a long historical process.The historical exploring on this process was not only important to the study on the origin,essence and core of the theory of Fourier series,but also a significant perspective to reveal the links between mathematics and music.
出处 《自然辩证法研究》 CSSCI 北大核心 2011年第7期100-106,共7页 Studies in Dialectics of Nature
基金 西北师范大学青年教师科研提升项目(SKQNYB10010 SKQNYB10011) 教育部人文社科项目(10YJA720035) 重庆市教委科学技术研究项目(KJ111208)
关键词 傅立叶级数 简单模式叠加观念 数学与音乐 泛音 Fourier Series the notion of superposition of simple modes mathematics and music harmonics
  • 相关文献

参考文献14

  • 1《数学辞海》编辑委员会编..数学辞海 第一卷[M].太原:山西教育出版社,2002:946页.
  • 2Howard Eves. Great Moments in Mathematics(After 1650) [M]. The Mathematical Association of America, 1981 : 52. 被引量:1
  • 3迈克尔·肯尼迪,乔伊斯·布尔恩编..牛津简明音乐词典[M].北京:人民音乐出版社,2002:1432.
  • 4Sigalia Dostrovsky. Early Vibration Theory Physics and Music in the Seventeenth Century [J]. Archive for History of Exact Sciences, 1975, 14(3) 7169 - 218. 被引量:1
  • 5Wallis. On the Trembling of Consonant Strings, a New Musical Discovery [J]. Philosophical Transactions, 1677 , Ⅶ: 839 - 842. 被引量:1
  • 6Robartes. A Discourse Concerning the Musical Notes of the Trumpet, and the Trumpet Marine, and of Defects of the Same[J]. Philosophical Transactions, 1692, ⅩⅤⅡ: 559 - 563. 被引量:1
  • 7Olivier Darrigol. The Acoustic Origins of Harmonic Analysis[J]. Archive for History of Exact Sciences, 2007, 61 (4) :343-424. 被引量:1
  • 8[日]涉谷道雄.[日]Haruse Hiroki漫画绘制,[日]株式会社TREND-PRO漫画制作.漫画傅里叶解析[M].陈芳,译.北京:科学出版社,2009:207. 被引量:1
  • 9M克莱因.古今数学思想(第二册)[M].北京大学数学系数学史翻译组,译.上海:上海科学技术出版社,1979:213,246. 被引量:1
  • 10D E Struik. A Source Book in Mathematics 1200-1800 [ M ]. Cambridge, Massachusetts: Harvard University Press:1969. 363-364. 被引量:1

共引文献4

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部