期刊文献+

外加磁场下抛物型量子线中的带电激子 被引量:2

Charged excitons in parabolic quantum-well wires under magnetic filed
原文传递
导出
摘要 在一维等效模型下采用有效差分法对抛物型量子阱线中带电激子的束缚能进行了计算,分析了约束势以及磁场对带电激子束缚能的影响,并对带正电激子(X+)和带负电激子(X-)的情况进行了比较.结果表明:电子和空穴的振子强度对带电激子的稳定性有重要影响,X+的束缚能不总是比X-的大,随着空穴振子强度的增加束缚能的函数曲线将会出现交叉,这同实验得到的结果符合;磁场的存在会增加粒子间的束缚,并且磁场对束缚能的影响同振子强度大小有关. The binding energies of the charged excitons(negative X- and positive X + excitons) are calculated using the finite- difference method within the quasi-one-dimensional effective potential model. The effects due to the magnetic filed and quantum confinements on the binding energy are analyzed, and the following results are obtained : ( 1 ) relative electron and hole harmonic oscillator confinement each have a strong effect on the stablity of charged excitons, the binding energy of X + is not always larger than that of X- , e. g. , due to the increase of the hole harmonic oscillator length, leading to the crossing of X + and X- lines as recently observed experimentally ; (2) the magnetic field leads to an increase of the binding energy, and the magnetic field dependence of the binding energy is related to the harmonic oscillator length.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第7期648-654,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10674040) 河北自然科学基金(批准号:A200700233) 河北工程大学青年科学基金资助的课题~~
关键词 带电激子 量子线 束缚能 磁场 charged exciton, quantum well wires, binding energy, magnetic field
  • 相关文献

参考文献32

  • 1Ikezawa M, Nalr Selvakumar V, Ren H W, Ben H W, Masumoto Y, Ruda H .2006. Phys. Rev. B 73 125321. 被引量:1
  • 2Chu Q J, Yin H W, WengYX.2007. Chin. Phys. 16 3052. 被引量:1
  • 3Zhang T Y, ZhaoW.2008. Chin. Phys. B 17 4285. 被引量:1
  • 4Gao K, Xie S J, Li Y, Yin S, Liu D S, Zhao X .2009. Chin. Phys. B 18 2961. 被引量:1
  • 5Lampert M A 1958 Phys. Rev. Lett. 1 450. 被引量:1
  • 6Kheng K, Cox R T, Merle d'Aubigne Y, Bassani F, Saminadayar K, Tatarenko S 1993 Phys. Rev. Lett. 71 1752. 被引量:1
  • 7Shields A J, Pepper M, Ritchie D A, Simmons M Y, Jones G A C 1995 Phys. Rev. B 51 18049. 被引量:1
  • 8Chapman J R, Johnson N F, Nicopoulos V N 1997 Phys. Rev, B 52 R10221. 被引量:1
  • 9Shields A J, Bolton F M, Simmons M Y, Pepper Y, Ritchie D A 1997 Phys. Rev. B 55 R1970. 被引量:1
  • 10Wojs A, Szlufarska I, Kyung-SooY, Quinn J J 1999. Phys. Rev. B 60 Rl1273. 被引量:1

同被引文献28

  • 1周旺民,王崇愚.低维半导体材料应变分布[J].物理学报,2004,53(12):4308-4313. 被引量:6
  • 2张红,刘磊,刘建军.对称GaAs/Al_(0.3)Ga_(0.7)As双量子阱中激子的束缚能[J].物理学报,2007,56(1):487-490. 被引量:12
  • 3何锐,丁朝华,鲍继平.量子线中强耦合束缚极化子激发态的性质[J].原子分子物理学报,2011,28(5) :949-952. 被引量:2
  • 4G Goldoni, F Rossi, E Molinari, et al. Band Structure and Optical Anisotropy in V- shaped and T-shaped Semiconductor Quantum Wires[J]. Phys Rev B, 1997, 55( 11 ): 7110-7123. 被引量:1
  • 5O Stier, D Bimberg. Modeling of Strained Quantum Wires Using Eight -band k. p Theory [J]. Phys Rev B, 1997, 55 ( 12): 7726 -7732. 被引量:1
  • 6T Sogawa, H Ando, S Ando, et al. Interband Optical Transition Spectra in GaAs Quantum Wires with Rectangular Cross Sections[J]. Phys Rev B, 1997, 56(4): 1958-1966. 被引量:1
  • 7S H Chen. Ground and first excited state energies of impurity-bound polaron in a parabolic quantum wires[J]. Physica.E, 2008,40 (9) : 2941-2944. 被引量:1
  • 8S H Chen, J L Xiao. Influnce of both electric and magnetic fields on the bound polaron in an anisotropic quantum wires [J]. Int J Mod Phys. B,2008, 22( 16): 2611-2616. 被引量:1
  • 9S H Chen, J L Xiao, Temperature effect on impurity-bound potaronic energy levels in a GaAs parabolic quantum wires [J].Physica B, 2007,393-396. 被引量:1
  • 10Q H Chen, K L Wang. Feyman-Haken path integral study on bound polaron in parabolic quantum wire [J].Chin Phys Lett,2001, 18(5):668-673. 被引量:1

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部